首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3-hydroxybenzoate hydroxylase (MHBH) from Comamonas testosteroni KH122-3s is a single-component flavoprotein monooxygenase, a member of the glutathione reductase (GR) family. It catalyzes the conversion of 3-hydroxybenzoate to 3,4-dihydroxybenzoate with concomitant requirements for equimolar amounts of NADPH and molecular oxygen. The production of dihydroxy-benzenoid derivative by hydroxylation is the first step in the aerobic degradation of various phenolic compounds in soil microorganisms. To establish the structural basis for substrate recognition, the crystal structure of MHBH in complex with its substrate was determined at 1.8 A resolution. The enzyme is shown to form a physiologically active homodimer with crystallographic 2-fold symmetry, in which each subunit consists of the first two domains comprising an active site and the C-terminal domain involved in oligomerization. The protein fold of the catalytic domains and the active-site architecture, including the FAD and substrate-binding sites, are similar to those of 4-hydroxybenzoate hydroxylase (PHBH) and phenol hydroxylase (PHHY), which are members of the GR family, providing evidence that the flavoprotein aromatic hydroxylases share similar catalytic actions for hydroxylation of the respective substrates. Structural comparison of MHBH with the homologous enzymes suggested that a large tunnel connecting the substrate-binding pocket to the protein surface serves for substrate transport in this enzyme. The internal space of the large tunnel is distinctly divided into hydrophilic and hydrophobic regions. The characteristically stratified environment in the tunnel interior and the size of the entrance would allow the enzyme to select its substrate by amphiphilic nature and molecular size. In addition, the structure of the Xe-derivative at 2.5 A resolution led to the identification of a putative oxygen-binding site adjacent to the substrate-binding pocket. The hydrophobic nature of the xenon-binding site extends to the solvent through the tunnel, suggesting that the tunnel could be involved in oxygen transport.  相似文献   

2.
2-Hydroxy-6-oxo-7-methylocta-2,4-dienoate hydrolase (CumD) from Pseudomonas fluorescens IP01 hydrolyzes a meta-cleavage product generated in the cumene (isopropylbenzene) degradation pathway. The crystal structures of the inactive S103A mutant of the CumD enzyme complexed with isobutyrate and acetate ions were determined at 1.6 and 2.0 A resolution, respectively. The isobutyrate and acetate ions were located at the same position in the active site, and occupied the site for a part of the hydrolysis product with CumD, which has the key determinant group for the substrate specificity of related hydrolases. One of the oxygen atoms of the carboxyl group of the isobutyrate ion was hydrogen bonded with a water molecule and His252. Another oxygen atom of the carboxyl group was situated in an oxyanion hole formed by the two main-chain N atoms. The isopropyl group of the isobutyric acid was recognized by the side-chains of the hydrophobic residues. The substrate-binding pocket of CumD was long, and the inhibition constants of various organic acids corresponded well to it. In comparison with the structure of BphD from Rhodococcus sp. RHA1, the structural basis for the substrate specificity of related hydrolases, is revealed.  相似文献   

3.
Biphenyl dioxygenase is the enzyme that catalyzes the stereospecific dioxygenation of the aromatic ring. This enzyme has attracted the attention of researchers due to its ability to oxidize polychlorinated biphenyls, which is one of the serious environmental contaminants. We determined the crystal structure of the terminal oxygenase component of the biphenyl dioxygenase (BphA1A2) derived from Rhodococcus strain sp. RHA1 in substrate-free and complex forms. These crystal structures revealed that the substrate-binding pocket makes significant conformational changes upon substrate binding to accommodate the substrate into the pocket. Our analysis of the crystal structures suggested that the residues in the substrate-binding pocket can be classified into three groups, which, respectively, seem to be responsible for the catalytic reaction, the orientation/conformation of the substrate, and the conformational changes of the substrate-binding pocket. The cooperative actions of residues in the three groups seem to determine the substrate specificity of the enzyme.  相似文献   

4.
The following three-dimensional structures of three forms of glutamine:phenylpyruvate aminotransferase from Thermus thermophilus HB8 have been determined and represent the first x-ray analysis of the enzyme: the unliganded pyridoxal 5'-phosphate form at 1.9 A resolution and two complexes with 3-phenylpropionate and alpha-keto-gamma-methylthiobutyrate at 2.35 and 2.6 A resolution, respectively. The enzyme shows high activity toward phenylalanine, tyrosine, tryptophan, kynurenine, methionine, and glutamine. The enzyme is a homodimer, and each subunit is divided into an N-terminal arm and small and large domains. Based on its folding, the enzyme belongs to fold type I, aminotransferase subclass Ib. The subclass I aminotransferases whose structures have so far been determined exhibit a large movement of the small domain region upon binding of a substrate. Similarly, the glutamine:phenylpyruvate aminotransferase undergoes a large movement in part of the small domain to close the active site. The active-site pocket has a shape and size suitable to enclose the side chain of an aromatic amino acid or that of methionine. The inner side of the pocket is mostly hydrophobic, but also has polar sites. The kynurenine complex generated by computer modeling fits the pocket of the enzyme and its hydrophilic groups interact with the polar sites of the pocket.  相似文献   

5.
Lysophosphatidic acid (LPA) is an important bioactive phospholipid involved in cell signaling through Gprotein- coupled receptors pathways. It is also involved in balancing the lipid composition inside the cell, and modulates the function of lipid rafts as an intermediate in phospholipid metabolism. Because of its involvement in these important processes, LPA degradation needs to be regulated as precisely as its production. Lysophosphatidic acid phosphatase type 6 (ACP6) is an LPA-specific acid phosphatase that hydrolyzes LPA to monoacylglycerol (MAG) and phosphate. Here, we report three crystal structures of human ACP6 in complex with malonate, L- (+)-tartrate and tris, respectively. Our analyses revealed that ACP6 possesses a highly conserved Rossmann-foldlike body domain as well as a less conserved cap domain. The vast hydrophobic substrate-binding pocket, which is located between those two domains, is suitable for accommodating LPA, and its shape is different from that of other histidine acid phosphatases, a fact that is consistent with the observed difference in substrate preferences. Our analysis of the binding of three molecules in the active site reveals the involvement of six conserved and crucial residues in binding of the LPA phosphate group and its catalysis. The structure also indicates a water-supplying channel for substrate hydrolysis. Our structural data are consistent with the fact that the enzyme is active as a monomer. In combination with additional mutagenesis and enzyme activity studies, our structural data provide important insights into substrate recognition and the mechanism for catalytic activity of ACP6.  相似文献   

6.
The structure of L-amino acid oxidase (LAAO) from Calloselasma rhodostoma has been determined to 2.0 A resolution in the presence of two ligands: citrate and o-aminobenzoate (AB). The protomer consists of three domains: an FAD-binding domain, a substrate-binding domain and a helical domain. The interface between the substrate-binding and helical domains forms a 25 A long funnel, which provides access to the active site. Three AB molecules are visible within the funnel of the LAAO-AB complex; their orientations suggest the trajectory of the substrate to the active site. The innermost AB molecule makes hydrogen bond contacts with the active site residues, Arg90 and Gly464, and the aromatic portion of the ligand is situated in a hydrophobic pocket. These contacts are proposed to mimic those of the natural substrate. Comparison of LAAO with the structure of mammalian D-amino acid oxidase reveals significant differences in their modes of substrate entry. Furthermore, a mirror-symmetrical relationship between the two substrate-binding sites is observed which facilitates enantiomeric selectivity while preserving a common arrangement of the atoms involved in catalysis.  相似文献   

7.
Shikimate dehydrogenase catalyzes the NADPH-dependent reversible reduction of 3-dehydroshikimate to shikimate. We report the first X-ray structure of shikimate dehydrogenase from Haemophilus influenzae to 2.4-A resolution and its complex with NADPH to 1.95-A resolution. The molecule contains two domains, a catalytic domain with a novel open twisted alpha/beta motif and an NADPH binding domain with a typical Rossmann fold. The enzyme contains a unique glycine-rich P-loop with a conserved sequence motif, GAGGXX, that results in NADPH adopting a nonstandard binding mode with the nicotinamide and ribose moieties disordered in the binary complex. A deep pocket with a narrow entrance between the two domains, containing strictly conserved residues primarily contributed by the catalytic domain, is identified as a potential 3-dehydroshikimate binding pocket. The flexibility of the nicotinamide mononucleotide portion of NADPH may be necessary for the substrate 3-dehydroshikimate to enter the pocket and for the release of the product shikimate.  相似文献   

8.
(3R)-hydroxyacyl-CoA dehydrogenase is part of multifunctional enzyme type 2 (MFE-2) of peroxisomal fatty acid beta-oxidation. The MFE-2 protein from yeasts contains in the same polypeptide chain two dehydrogenases (A and B), which possess difference in substrate specificity. The crystal structure of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase AB heterodimer, consisting of dehydrogenase A and B, determined at the resolution of 2.2A, shows overall similarity with the prototypic counterpart from rat, but also important differences that explain the substrate specificity differences observed. Docking studies suggest that dehydrogenase A binds the hydrophobic fatty acyl chain of a medium-chain-length ((3R)-OH-C10) substrate as bent into the binding pocket, whereas the short-chain substrates are dislocated by two mechanisms: (i) a short-chain-length 3-hydroxyacyl group ((3R)-OH-C4) does not reach the hydrophobic contacts needed for anchoring the substrate into the active site; and (ii) Leu44 in the loop above the NAD(+) cofactor attracts short-chain-length substrates away from the active site. Dehydrogenase B, which can use a (3R)-OH-C4 substrate, has a more shallow binding pocket and the substrate is correctly placed for catalysis. Based on the current structure, and together with the structure of the 2-enoyl-CoA hydratase 2 unit of yeast MFE-2 it becomes obvious that in yeast and mammalian MFE-2s, despite basically identical functional domains, the assembly of these domains into a mature, dimeric multifunctional enzyme is very different.  相似文献   

9.
The microbial degradation of polychlorinated biphenyls (PCBs) by the biphenyl catabolic (Bph) pathway is limited in part by the pathway's fourth enzyme, BphD. BphD catalyzes an unusual carbon-carbon bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA), in which the substrate is subject to histidine-mediated enol-keto tautomerization prior to hydrolysis. Chlorinated HOPDAs such as 3-Cl HOPDA inhibit BphD. Here we report that BphD preferentially hydrolyzed a series of 3-substituted HOPDAs in the order H>F>Cl>Me, suggesting that catalysis is affected by steric, not electronic, determinants. Transient state kinetic studies performed using wild-type BphD and the hydrolysis-defective S112A variant indicated that large 3-substituents inhibited His-265-catalyzed tautomerization by 5 orders of magnitude. Structural analyses of S112A.3-Cl HOPDA and S112A.3,10-diF HOPDA complexes revealed a non-productive binding mode in which the plane defined by the carbon atoms of the dienoate moiety of HOPDA is nearly orthogonal to that of the proposed keto tautomer observed in the S112A.HOPDA complex. Moreover, in the 3-Cl HOPDA complex, the 2-hydroxo group is moved by 3.6 A from its position near the catalytic His-265 to hydrogen bond with Arg-190 and access of His-265 is blocked by the 3-Cl substituent. Nonproductive binding may be stabilized by interactions involving the 3-substituent with non-polar side chains. Solvent molecules have poor access to C6 in the S112A.3-Cl HOPDA structure, more consistent with hydrolysis occurring via an acyl-enzyme than a gem-diol intermediate. These results provide insight into engineering BphD for PCB degradation.  相似文献   

10.
The pathway for oxidative degradation of nicotine in Arthrobacter nicotinovorans includes two genetically and structurally unrelated flavoenzymes, 6-hydroxy-l-nicotine oxidase (6HLNO) and 6-hydroxy-d-nicotine oxidase, which act with absolute stereospecificity on the l- and d-forms, respectively, of 6-hydroxy-nicotine. We solved the crystal structure of 6HLNO at 1.95 Å resolution by combined isomorphous/multiple-wavelength anomalous dispersion phasing. The overall structure of each subunit of the 6HLNO homodimer and the folds of the individual domains are closely similar as in eukaryotic monoamine oxidases. Unexpectedly, a diacylglycerophospholipid molecule was found to be non-covalently bound to each protomer of 6HLNO. The fatty acid chains occupy hydrophobic channels that penetrate deep into the interior of the substrate-binding domain of each subunit. The solvent-exposed glycerophosphate moiety is located at the subunit-subunit interface. We further solved the crystal structure of a complex of dithionite-reduced 6HLNO with the natural substrate 6-hydroxy-l-nicotine at 2.05 Å resolution. The location of the substrate in a tight cavity suggests that the binding geometry of this unproductive complex may be closely similar as under oxidizing conditions. The observed orientation of the bound substrate relative to the isoalloxazine ring of the flavin adenine dinucleotide cofactor is suitable for hydride-transfer dehydrogenation at the carbon atom that forms the chiral center of the substrate molecule. A comparison of the substrate-binding modes of 6HLNO and 6-hydroxy-d-nicotine oxidase, based on models of complexes with the d-substrate, suggests an explanation for the stereospecificity of both enzymes. The two enzymes are proposed to orient the enantiomeric substrates in mirror symmetry with respect to the plane of the flavin.  相似文献   

11.
The reddish purple open chain tetrapyrrole pigment phycoerythrobilin (PEB; A(lambdamax) approximately 550 nm) is an essential chromophore of the light-harvesting phycobiliproteins of most cyanobacteria, red algae, and cryptomonads. The enzyme phycoerythrobilin synthase (PebS), recently discovered in a marine virus infecting oceanic cyanobacteria of the genus Prochlorococcus (cyanophage PSSM-2), is a new member of the ferredoxin-dependent bilin reductase (FDBR) family. In a formal four-electron reduction, the substrate biliverdin IXalpha is reduced to yield 3Z-PEB, a reaction that commonly requires the action of two individual FDBRs. The first reaction catalyzed by PebS is the reduction of the 15,16-methine bridge of the biliverdin IXalpha tetrapyrrole system. This reaction is exclusive to PEB biosynthetic enzymes. The second reduction site is the A-ring 2,3,3(1),3(2)-diene system, the most common target of FDBRs. Here, we present the first crystal structures of a PEB biosynthetic enzyme. Structures of the substrate complex were solved at 1.8- and 2.1-A resolution and of the substrate-free form at 1.55-A resolution. The overall folding revealed an alpha/beta/alpha-sandwich with similarity to the structure of phycocyanobilin:ferredoxin oxidoreductase (PcyA). The substrate-binding site is located between the central beta-sheet and C-terminal alpha-helices. Eight refined molecules with bound substrate, from two different crystal forms, revealed a high flexibility of the substrate-binding pocket. The substrate was found to be either in a planar porphyrin-like conformation or in a helical conformation and is coordinated by a conserved aspartate/asparagine pair from the beta-sheet side. From the alpha-helix side, a conserved highly flexible aspartate/proline pair is involved in substrate binding and presumably catalysis.  相似文献   

12.
The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 A by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases.  相似文献   

13.
2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) hydrolase (BphD) is a key determinant in the aerobic transformation of polychlorinated biphenyls (PCBs) by Burkholderia sp. strain LB400 (S. Y. K. Seah, G. Labbé, S. Nerdinger, M. Johnson, V. Snieckus, and L. D. Eltis, J. Biol. Chem. 275:15701-15708, 2000). To determine whether this is also true in divergent biphenyl degraders, the homologous hydrolase of Rhodococcus globerulus P6, BphD(P6), was hyperexpressed, purified to apparent homogeneity, and studied by steady-state kinetics. BphD(P6) hydrolyzed HOPDA with a k(cat)/K(m) of 1.62 (+/- 0.03) x 10(7) M(-1) s(-1) (100 mM phosphate [pH 7.5], 25 degrees C), which is within 70% of that of BphD(LB400). BphD(P6) was also similar to BphD(LB400) in that it catalyzed the hydrolysis of HOPDAs bearing chloro substituents on the phenyl moiety at least 25 times more specifically than those bearing chloro substituents on the dienoate moiety. However, the rhodococcal enzyme was significantly more specific for 9-Cl and 10-Cl HOPDAs, catalyzing the hydrolysis of 9-Cl, 10-Cl, and 9,10-diCl HOPDAs two- to threefold respectively, more specifically than HOPDA. Moreover, 4-Cl HOPDA competitively inhibited BphD(P6) more effectively than 3-Cl HOPDA, which is the inverse of what was observed in BphD(LB400). These results demonstrate that BphD is a key determinant in the aerobic transformation of PCBs by divergent biphenyl degraders, but that there exists significant diversity in the specificity of these biphenyl hydrolases.  相似文献   

14.
The d-aldohexose dehydrogenase from the thermoacidophilic archaea Thermoplasma acidophilum (AldT) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily and catalyzes the oxidation of several monosaccharides with a preference for NAD+ rather than NADP+ as a cofactor. It has been found that AldT is a unique enzyme that exhibits the highest dehydrogenase activity against d-mannose. Here, we describe the crystal structures of AldT in ligand-free form, in complex with NADH, and in complex with the substrate d-mannose, at 2.1 Å, 1.65 Å, and 1.6 Å resolution, respectively. The AldT subunit forms a typical SDR fold with an unexpectedly long C-terminal tail and assembles into an intertwined tetramer. The d-mannose complex structure reveals that Glu84 interacts with the axial C2 hydroxyl group of the bound d-mannose. Structural comparison with Bacillus megaterium glucose dehydrogenase (BmGlcDH) suggests that the conformation of the glutamate side-chain is crucial for discrimination between d-mannose and its C2 epimer d-glucose, and the conformation of the glutamate side-chain depends on the spatial arrangement of nearby hydrophobic residues that do not directly interact with the substrate. Elucidation of the d-mannose recognition mechanism of AldT further provides structural insights into the unique substrate selectivity of AldT. Finally, we show that the extended C-terminal tail completely shuts the substrate-binding pocket of the neighboring subunit both in the presence and absence of substrate. The elaborate inter-subunit interactions between the C-terminal tail and the entrance of the substrate-binding pocket imply that the tail may play a pivotal role in the enzyme activity.  相似文献   

15.
The crystal structures of the human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in three different liganding states were determined and compared with those of the rat testis isozyme. A set of amino acid sequence heterogeneity from the two distinct genes encoding the two different tissue isozymes leads to both global and local conformational differences that may cause the differences in catalytic properties of the two isozymes. The sequence differences in a beta-hairpin loop in the kinase domain causes a translational shift of several hydrophobic interactions in the dimeric contact region, and its propagation to the domains interface results in a 5 degrees twist of the entire bisphosphatase domain relative to the kinase domain. The bisphosphatase domain twist allows the dimeric interactions between the bisphosphatase domains, which are negligible in the testis enzyme, and as a result, the conformational stability of the domain is increased. Sequence polymorphisms also confer small but significant structural dissimilarities in the substrate-binding loops, allowing the differentiated catalytic properties between the two different tissue-type isozymes. Whereas the polymorphic sequence at the bisphosphatase-active pocket suggests a more suitable substrate binding, a similar extent of sequence differences at the kinase-active pocket confers a different mechanism of substrates bindings to the kinase-active pocket. It includes the ATP-sensitive unwinding of the switch helix alpha5, which is a characteristic ATP-dependent conformational change in the testis form. The sequence-dependent structural difference disallows the liver kinase to follow the ATP-switch mechanism. Altogether these suggest that the liver isoform has structural features more appropriate for an elevated bisphosphatase activity, compared with that of the testis form. The structural predisposition for bisphosphatase activity in the liver isozyme is consistent with the liver-unique glucose metabolic pathway, gluconeogenesis.  相似文献   

16.
3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is a dimeric flavoprotein that catalyzes the NADH- and oxygen-dependent para-hydroxylation of 3-hydroxybenzoate to 2,5-dihydroxybenzoate. In this study, we report the crystal structure of 3HB6H as expressed in Escherichia coli. The overall fold of 3HB6H is similar to that of p-hydroxybenzoate hydroxylase and other flavoprotein aromatic hydroxylases. Unexpectedly, a lipid ligand is bound to each 3HB6H monomer. Mass spectral analysis identified the ligand as a mixture of phosphatidylglycerol and phosphatidylethanolamine. The fatty acid chains occupy hydrophobic channels that deeply penetrate into the interior of the substrate-binding domain of each subunit, whereas the hydrophilic part is exposed on the protein surface, connecting the dimerization domains via a few interactions. Most remarkably, the terminal part of a phospholipid acyl chain is directly involved in the substrate-binding site. Co-crystallized chloride ion and the crystal structure of the H213S variant with bound 3-hydroxybenzoate provide hints about oxygen activation and substrate hydroxylation. Essential roles are played by His-213 in catalysis and Tyr-105 in substrate binding. This phospholipid-assisted strategy to control regioselective aromatic hydroxylation is of relevance for optimization of flavin-dependent biocatalysts.  相似文献   

17.
Li JJ  Li C  Blindauer CA  Bugg TD 《Biochemistry》2006,45(41):12461-12469
C-C hydrolase enzymes MhpC and BphD catalyze the hydrolytic C-C cleavage of meta-ring fission intermediates on the Escherichia coli phenylpropionic acid and Burkholderia xenovorans LB400 biphenyl degradation pathways and are both members of the alpha/beta-hydrolase family containing a Ser-His-Asp catalytic triad. The catalytic mechanism of this family of enzymes is thought to proceed via a gem-diol reaction intermediate, which has not been observed directly. Site-directed single mutants of BphD in which catalytic residues His-265 and Ser-112 were replaced with Ala were found to possess 10(4)-fold reduced k(cat) values, and in each case, the C-C cleavage step was shown by pre-steady-state kinetic analysis to be rate-limiting. The processing of a 6-(13)C-labeled aryl-containing substrate by these H265A or S112A mutant BphD enzymes was monitored directly by (13)C NMR spectroscopy. A new line-broadened signal was observed at 128 ppm for each enzyme, corresponding to the proposed gem-diol reaction intermediate, over a time scale of 1-24 h. A similar signal was observed upon incubation of the (13)C-labeled substrate with an H114A MhpC mutant, which is able to accept the 6-phenyl-containing substrate, on a shorter time scale. The direct observation of a gem-diol intermediate provides further evidence that supports a general base mechanism for this family of enzymes.  相似文献   

18.
Branched-chain amino acid aminotransferase (BCAT), which has pyridoxal 5'-phosphate as a cofactor, is a key enzyme in the biosynthetic pathway of hydrophobic amino acids (leucine, isoleucine, and valine). The enzyme reversibly catalyzes the transfer of the amino group of a hydrophobic amino acid to 2-oxoglutarate to form a 2-oxo acid and glutamate. Therefore, the active site of BCAT should have a mechanism to enable recognition of an acidic amino acid as well as a hydrophobic amino acid (double substrate recognition). The three-dimensional structures of Escherichia coli BCAT (eBCAT) in complex with the acidic substrate (glutamate) and the acidic substrate analogue (glutarate) have been determined by X-ray diffraction at 1.82 and 2.15 A resolution, respectively. The enzyme is a homo hexamer, with the polypeptide chain of the subunit folded into small and large domains, and an interdomain loop. The eBCAT in complex with the natural substrate, glutamate, was assigned as a ketimine as the most probable form based upon absorption spectra of the crystal complex and the shape of the residual electron density corresponding to the cofactor-glutamate bond structure. Upon binding of an acidic substrate, the interdomain loop approaches the substrate to shield it from the solvent region, as observed in the complex with a hydrophobic substrate. Both the acidic and the hydrophobic side chains of the substrates are bound to almost the same position in the pocket of the enzyme and are identical in structure. The inner side of the pocket is mostly hydrophobic to accommodate the hydrophobic side chain but has four sites to coordinate with the gamma-carboxylate of glutamate. The mechanism for the double substrate recognition observed in eBCAT is in contrast to those in aromatic amino acid and histidinol-phosphate aminotransferases. In an aromatic amino acid aminotransferase, the acidic side chain is located at the same position as that for the aromatic side chain because of large-scale rearrangements of the hydrogen bond network. In the histidinol-phosphate aminotransferase, the acidic and basic side chains are located at different sites and interact with different residues of the disordered loop.  相似文献   

19.
20.
The crystal structure of dipeptidyl aminopeptidase IV from Stenotrophomonas maltophilia was determined at 2.8-A resolution by the multiple isomorphous replacement method, using platinum and selenomethionine derivatives. The crystals belong to space group P4(3)2(1)2, with unit cell parameters a = b = 105.9 A and c = 161.9 A. Dipeptidyl aminopeptidase IV is a homodimer, and the subunit structure is composed of two domains, namely, N-terminal beta-propeller and C-terminal catalytic domains. At the active site, a hydrophobic pocket to accommodate a proline residue of the substrate is conserved as well as those of mammalian enzymes. Stenotrophomonas dipeptidyl aminopeptidase IV exhibited activity toward a substrate containing a 4-hydroxyproline residue at the second position from the N terminus. In the Stenotrophomonas enzyme, one of the residues composing the hydrophobic pocket at the active site is changed to Asn611 from the corresponding residue of Tyr631 in the porcine enzyme, which showed very low activity against the substrate containing 4-hydroxyproline. The N611Y mutant enzyme was generated by site-directed mutagenesis. The activity of this mutant enzyme toward a substrate containing 4-hydroxyproline decreased to 30.6% of that of the wild-type enzyme. Accordingly, it was considered that Asn611 would be one of the major factors involved in the recognition of substrates containing 4-hydroxyproline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号