首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interhead fluorescence energy transfer studies between probes located at translationally equivalent sites on the two heads of scallop myosin indicates that the distance between such sites is no less than 50 A. Regulatory light chains, possessing either one (Mercenaria, chicken gizzard) or two (Loligo, rabbit skeletal) sulfhydryl groups, were modified either with 1,5-IAEDANS (N'-iodoacetyl-N'-(1-sulfo-5-n-naphthyl)ethylenediamine), as energy transfer donor, or with IAF (5-(iodoacetamido)fluorescein) or DABMI (4-dimethylaminophenylazophenyl-4'-maleimide), as energy transfer acceptor. The sulfhydryl groups on these light chains are located at different positions within the regulatory light-chain primary sequence; this enables one to probe a variety of locations, with respect to regulatory light-chain topology, on each myosin head. These independently modified regulatory light chains were added back to desensitized scallop myosin under a variety of conditions, including biphasic re-addition, the aim being to maximize the number of interhead energy transfer couples present. The efficiency of energy transfer was determined on the same samples by both steady-state and time-decay techniques. Results obtained by these two techniques were in good agreement with each other and indicated that the efficiency of energy transfer did not exceed 20% in any of the hybrids studied. Transfer efficiencies were invariant, irrespective of the presence or absence of MgATP, calcium or actin, either separately or in combination. Results using heavy meromyosin at low ionic strength were identical. It is shown that these results, in conjunction with the results of recent crosslinking studies performed on comparable myosin hybrids, may place certain restrictions on the configurations of the two heads of myosin.  相似文献   

2.
The techniques of fluorescence resonance energy transfer (FRET) and cross-linking can provide complementary information concerning the relative separation of a pair of sites. Cross-linking experiments provide an assessment of the distance of closest approach between a pair of sites. FRET measurements, by contrast, yield information about the average distance between the pair of sites. We have taken advantage of hybrid myosins to understand the relationship between distances obtained for a pair of equivalent sites, one on each myosin head, using both FRET (steady-state and time-decay) and cross-linking techniques. The rigid cross-linker, 4-4'-dimaleimidyl-stilbene-2-2'-disulfonic acid (DMSDS), can efficiently cross-link the two myosin regulatory light-chains, each at residue Cys50 of the Mercenaria regulatory light chain (Chantler, P.D., and S. M. Bower. 1988. J. Biol. Chem. 263:938-944), indicating that these sites can come within 18 +/- 2 A of each other. In a complementary set of experiments, steady-state and time-decay measurements using fluorescence donor/acceptor pairs located at these same sites indicate transfer efficiencies of somewhat less than 20%, suggesting an average separation of greater than 50 A between sites (Chantler, P. D., and T. Tao. 1986. J. Mol. Biol. 192:87-99). Here, we present theoretical calculations which show that efficient cross-linking can be achieved readily in dynamic systems such as the heads of myosin, even though the necessary subpopulation of proximate molecules at any instant may be below the detection limits of time-decay-FRET.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Proximity of regulatory light chains in scallop myosin   总被引:3,自引:0,他引:3  
The distance between the regulatory light chains of the two heads of the scallop myosin molecule was estimated with the aid of two photolabile cross-linkers, benzophenone maleimide and p-azidophenacylbromide. These cross-linkers selectively alkylate thiol groups and have a maximum length of about 9 A. One of the two regulatory light chains of scallop myosin was removed by treatment of myofibrils at 10 degrees C with EDTA and replaced with a foreign regulatory light chain carrying a cross-linker. Cross-linking between the scallop and foreign regulatory light chains was effected by photolysis. This was demonstrated by incubating nitrocellulose transfers of sodium dodecyl sulfate/polyacrylamide gels of the photolyzed hybrid myofibrils with specific antibodies against the different light chains, followed by fluorescein isothiocyanate-125I-labeled secondary antibody. Scallop regulatory light chains cross-linked extensively (20 to 50%) with Mercenaria regulatory light chains (cysteine in position approximately 50) in solutions that induce rigor in skinned fibers (no ATP) and in relaxing solutions (ATP but no Ca2+). Neither the regulatory light chains of chicken skeletal myosin (cysteines 129 and 157) nor those of gizzard myosin (cysteine 108) were cross-linked to scallop regulatory light chains in either medium. These results indicate that the N-terminal portions of the myosin regulatory light chains can approach each other within 9 A or less, while the distance between the C-terminal halves exceeds 9 A, and support the view that the N termini of the regulatory light chains point toward the myosin rod. Since the relative distance between the regulatory light chains of the two myosin heads is not altered between rigor and rest, we suggest that motion of the essential light chains is mainly responsible for the observed difference in the relative positions of the regulatory and essential light chains between conditions of rigor and rest.  相似文献   

4.
S M Bower  Y Wang  P D Chantler 《FEBS letters》1992,310(2):132-134
The di-thiol reagent, 5,5'-dithiobis (2-nitrobenzoic acid) is shown to induce disulfide bond formation between Mercenaria regulatory light-chain Cys-55 sites on either head of scallop hybrid myosin. This indicates that these two sites on opposite heads of myosin can come within 2A of each other and this confirms a prediction based on earlier data [Chantler, Tao and Stafford (1991) Biophys. J. 59, 1242-1250]. Results demonstrate that myosin heads in solution show a considerable mutual freedom of movement which can be monitored by probes in the vicinity of regulatory light-chain residue 55. Implications for light-chain movement on the myosin head are discussed.  相似文献   

5.
H S Park  T Tao  P D Chantler 《Biochemistry》1991,30(13):3189-3195
Resonance energy transfer measurements have been made on hybrid myosins in order to map distances between sites on the regulatory light chain, heavy chain, and actin as well as to assess potential conformational changes of functional importance. Using scallop (Aequipecten) myosin hybrid molecules possessing clam (Mercenaria) regulatory light chains, we have been able to map the distance between Cys-55 on the regulatory light chain and the fast-reacting thiol on the myosin heavy chain (SH-1). This distance is shown to be approximately 6.4 nm, and it is not altered by the presence or absence of Ca2+, MgATP, or actin. Experiments performed at low ionc strength on heavy meromyosin (HMM) derived from these hybrid myosins gave results similar to those performed on the soluble parent myosin preparations. The distances between Cys-374 on actin and each of the above sites were also measured. Mercenaria regulatory light-chain Cys-55, within the hybrid myosin molecule, was found to be greater than 8.0 nm away from actin Cys-374. Scallop heavy-chain SH-1 is shown to be approximately 4.5 nm away from actin Cys-374, in broad agreement with earlier measurements made by others in nonregulatory myosins. The significance of our results is discussed with respect to putative conformational changes within the region of the heavy chain connecting SH-1 to the N-terminal region of the light chain.  相似文献   

6.
Mercenaria regulatory light-chains, specifically labelled at cysteine 50 with N-iodoacetyl-N'-biotinylhexylenediamine, were rebound to regulatory light-chain denuded scallop myosin, and the hybrid myosin formed was decorated with avidin. These hybrid myosins were visualized by rotary-shadowing electron microscopy. Three distinct images of avidin-decorated hybrid myosin molecules were obtained. These comprise singly decorated molecules, where the avidin is bound symmetrically or asymmetrically with respect to the two heads of myosin, in addition to "figures-of-five", where two myosin molecules associate with a centrally placed avidin molecule. Analysis of these images indicates that the Mercenaria regulatory light-chain Cys50 site is located 15 to 35 A from the head-rod junction when the light-chain is bound in situ to myosin. Implications with respect to head topology and probe studies are discussed.  相似文献   

7.
Scallop myosin molecules contain two moles of regulatory light chains and two moles of light chains with unknown function. Removal of one of the regulatory light chains by treatment with EDTA is accompanied by the complete loss of the calcium dependence of the actin-activated ATPase activity and by the loss of one of the two calcium binding sites on the intact molecule. Such desensitized preparations recombine with one mole of regulatory light chain and regain calcium regulation and calcium binding. The second regulatory light chain may be selectively obtained from EDTA-treated scallop muscles by treatment with the Ellman reagent (5,5′-dithiobis(2-nitrobenzoic acid)): treatment with this reagent, however, leads to an irreversible loss of ATPase activity. The light chains obtained by treatment with EDTA and then DTNB are identical in composition and function. A different light chain fraction obtained by subsequent treatment with guanidine-HCl does not bind to desensitized or intact myoflbrils and has no effect on ATPase activity.Regulatory light chains which bind to desensitized scallop myofibrils with high affinity and restore calcium control were found in a number of molluscan and vertebrate myosins, including Mercenaria, Spisula, squid, lobster tail, beef heart, chicken gizzard, frog and rabbit. Although these myosins all have a similar subunit structure and contain about two moles of regulatory light chain, only scallop myosin or myofibrils can be desensitized by treatment with EDTA.There appear to be two classes of regulatory light chains. The regulatory light chains of molluscs and of vertebrate smooth muscles restore full calcium binding and also resensitize purified scallop myosin. The regulatory light chains from vertebrate striated, cardiac, and the fast decapod muscles, on the other hand, have no effect on calcium binding and do not resensitize purified scallop myosin unless the myosin is complexed with actin. The latter class of light chains is found in muscles where in vitro functional tests failed to detect myosin-linked regulation.  相似文献   

8.
Readdition of regulatory light chains to regulatory light chain denuded scallop myofibrils, in the presence of magnesium, results in a negatively co-operative restoration of calcium sensitivity as a function of regulatory light chain content. The form of the stoichiometry curves obtained in the presence of 10 mM-EDTA, by light chain removal from scallop myofibrils at various temperatures, are parabolic in shape, consistent with a random removal process. However, in the presence of EDTA at low temperatures, regulatory light chains are removed in a biphasic manner, indicating that the binding constants of the light chains for each myosin head are not equivalent under these conditions. It is shown here that as the temperature is raised, light chain removal by EDTA approaches that of a random process. The stoichiometry curves obtained in the presence of 10 mM-EDTA may therefore be seen as a composite of both a biphasic removal process (temperatures below 20 degrees C) and a random removal process (temperatures above 20 degrees C), there being a temperature-dependent switch in the myosin molecule between 17 and 23 degrees C that governs the mode of light chain removal. These results indicate that both myosin heads must contain light chains for calcium sensitivity and are consistent with our earlier proposals for head-head co-operativity within the scallop myosin molecule.  相似文献   

9.
The dissociation of the regulatory light chains from scallop myosin subfragments, on addition of EDTA, was investigated by using the fluorophore 8-anilinonaphthalene-1-sulphonate as a probe. The rate of this process (0.014 s-1) was partially limited by the rate of Mg2+ dissociation (0.058 s-1) from the non-specific high-affinity site. The dissociation of the regulatory light chain subfragment 1 was less extensive than from heavy meromyosin. Reassociation of the scallop regulatory light chain was induced on addition of Mg2+, but it appeared to be limited by a first-order step. The nature of this step was revealed by the kinetics of Mercenaria regulatory light chain association. Scallop heavy meromyosin, denuded of its regulatory light chains, exists in a refractory state, whose reversal to the nascent state limits the rate of light chain association (0.006 s-1). The formation of the refractory state is the driving force for the net dissociation of regulatory light chains from scallop heavy meromyosin. This mechanism is discussed with reference to existing structural information on light-chain-denuded myosin.  相似文献   

10.
Smooth muscle myosin from scallop (Patinopecten yessoensis) adductor muscle contains two kinds of regulatory light chains (regulatory light chains a and b), and myosin having regulatory light chain a is suggested to be suitable for inducing "catch contraction" rather than myosin having regulatory light chain b (Kondo, S. & Morita, F. (1981) J. Biochem. 90, 673-681). The amino acid sequences of these two light chains were determined and compared. Regulatory light chain a consists of 161 amino acid residues, while regulatory light chain b consist of 156 amino acid residues. Amino acid substitutions and insertions were found only in the N-terminal regions of the sequences. The structural difference between the two light chains may contribute to the functional difference between myosins having regulatory light chains a and b.  相似文献   

11.
A monoclonal antibody (IM7) toward scallop testis calmodulin and another one (PBE2) toward wheat germ calmodulin were produced. Ca2+ was required for IM7 to react with scallop calmodulin. IM7 reacted with the C-terminal region (Asp78-Lys148) of the calmodulin. As observed on competitive ELISA, IM7 reacted with chicken calmodulin, but not with Euglena gracilis or wheat calmodulin, troponin C, myosin light chains, or parvalbumin. It is assumed that the cluster of Thr143, Thr146, and Ser147 in the C-terminal region acts as the antigenic site. IM7 (and Fab of IM7) inhibited the activities of myosin light chain kinase and cAMP-phosphodiesterase. PBE2 reacted with wheat germ calmodulin irrespective of the presence or absence of Ca2+, the antigenic site being in the N-terminal region (Ala1-Met37). It reacted with wheat and spinach calmodulins, but not with scallop, chicken, or Euglena calmodulin, troponin C, myosin light chains, or parvalbumin. PBE2 had no effect on the activities of myosin light chain kinase and cAMP-phosphodiesterase.  相似文献   

12.
13.
Scallop striated adductor muscle myosin is a regulatory myosin, its activity being controlled directly through calcium binding. Here, we show that millimolar concentrations of trifluoperazine were effective at removal of all regulatory light chains from scallop myosin or myofibrils. More important, 200 microM trifluoperazine, a concentration 10-fold less than that required for light-chain removal, resulted in the reversible elimination of actin-activated and intrinsic ATPase activities. Unlike desensitization induced by metal ion chelation, which leads to an elevation of activity in the absence of calcium concurrent with regulatory light-chain removal, trifluoperazine caused a decline in actin-activated MgATPase activity both in the presence and absence of calcium. Procedures were equally effective with respect to scallop myosin, myofibrils, subfragment-1, or desensitized myofibrils. Increased alpha-helicity could be induced in the isolated essential light chain through addition of 100-200 microM trifluoperazine. We propose that micromolar concentrations of trifluoperazine disrupt regulation by binding to a single high-affinity site located in the C-terminal domain of the essential light chain, which locks scallop myosin in a conformation resembling the off-state. At millimolar trifluoperazine concentrations, additional binding sites on both light chains would be filled, leading to regulatory light-chain displacement.  相似文献   

14.
Calcium regulation of muscle contraction.   总被引:5,自引:0,他引:5       下载免费PDF全文
Calcium triggers contraction by reaction with regulatory proteins that in the absence of calcium prevent interaction of actin and myosin. Two different regulatory systems are found in different muscles. In actin-linked regulation troponin and tropomyosin regulate actin by blocking sites on actin required for complex formation with myosin; in myosin-linked regulation sites on myosin are blocked in the absence of calcium. The major features of actin control are as follows: there is a requirement for tropomyosin and for a troponin complex having three different subunits with different functions; the actin displays a cooperative behavior; and a movement of tropomyosin occurs controlled by the calcium binding on troponin. Myosin regulation is controlled by a regulatory subunit that can be dissociated in scallop myosin reversibly by removing divalent cations with EDTA. Myosin control can function with pure actin in the absence of tropomyosin. Calcium binding and regulation of molluscan myosins depend on the presence of regulatory light chains. It is proposed that the light chains function by sterically blocking myosin sites in the absence of calcium, and that the "off" state of myosin requires cooperation between the two myosin heads. Both myosin control and actin control are widely distributed in different organisms. Many invertebrates have muscles with both types of regulation. Actin control is absent in the muscles of molluscs and in several minor phyla that lack troponin. Myosin control is not found in striated vertebrate muscles and in the fast muscles of crustacean decapods, although regulatory light chains are present. While in vivo myosin control may not be excluded from vertebrate striated muscles, myosin control may be absent as a result of mutations of the myosin heavy chain.  相似文献   

15.
The two light chains of Physarum myosin have been purified in a 1:1 ratio with a yield of 0.5-1 mg/100 g of plasmodium and a purity of 40- 70%; the major contaminant is a 42,000-dalton protein. The 17,700 Mr Physarum myosin light chain (PhLC1) binds to scallop myofibrils, providing the regulatory light chains (ScRLC) have been removed. The 16,500 Mr light (PhLC2) does not bind to scallop myofibrils. The calcium control of scallop myosin ATPase is lost by the removal of one of the two ScRLC's and restored equally well by the binding of either PhLC1 or rabbit skeletal myosin light chains. When both ScRLC's are removed, replacement by two plasmodial light chains does not restore calcium control as platelet or scallop light chains do. Purified plasmodial actomyosin does not bind calcium in 10(-6) M free calcium, 1 mM MgCl2. No tropomyosin was isolated from Physarum by standard methods. Because the Physarum myosin light chains can substitute only partially for light chains from myosin linked systems, because calcium does not bind to the actomyosin, and because tropomyosin is apparently absent, the regulation of plasmodial actomyosin by micromolar Ca++ may involve other mechanisms, possibly phosphorylation.  相似文献   

16.
In vertebrate smooth/non-muscle myosins, phosphorylation of the regulatory light chains by a specific calmodulin-activated kinase controls both myosin head interaction with actin and assembly of the myosin into filaments. Previous studies have shown that the C-terminal domain of the regulatory light chain is crucial for the regulation of these myosin functions. To further dissect the role of this region of the light chain in myosin regulation, a series of chicken smooth muscle myosin regulatory light chain mutants has been constructed with successive C-terminal deletions. These mutants were synthesized in Escherichia coli and analysed by their ability to restore Ca2+ regulation to scallop myosin that had been stripped of its native regulatory light chains ('desensitized'). The results show that regulatory light chain mutants with deletions in the C-terminal helix in subdomain 4 were able to reform the regulatory Ca2+ binding site on the scallop myosin head, but had lost the ability to suppress scallop myosin filament assembly and interaction with actin in the absence of Ca2+. Further deletions in the C-terminal domain led to a gradual loss of ability to restore the regulatory Ca2+ binding site. Thus, the regions in the C-terminal half of the regulatory light chain responsible for myosin regulation can be identified.  相似文献   

17.
The binding of Ca2+, Mg2+ and Mn2+ to myosins from rabbit skeletal muscle, scallop striated adductor muscle and clam adductor muscle has been investigated. All three myosins bind two moles of divalent metal ion non-specifically and with high affinity (Mn2+ > Ca2+ > Mg2+). In addition, the molluscan myosins bind about a further two moles of Ca2+ specifically. Although rabbit myosin binds some Ca2+ in the presence of an excess of free Mg2+, this binding occurs at the nonspecific sites and should not be taken as evidence for a myosin-linked regulatory system of the type found in molluscan muscles. If such a system exists in vertebrate skeletal muscle, the homologous Ca2+-specific sites must be lost during the early stages of the myosin preparation.The characteristic electron paramagnetic resonance spectrum of the bound Mn2+ was utilized to confirm the homology of the non-specific sites in vertebrate and molluscan myosins. The sites are located on the “regulatory” class of light chain. Mn2+ bound to scallop myosin has a broad electron paramagnetic resonance spectrum, in contrast to the well-resolved spectra that it gives when bound to many other myosin species. This situation was exploited to identify homologous nonspecific, divalent metal-ion sites on the regulatory light chains from a variety of muscle types, including frog skeletal, rabbit cardiac, chicken gizzard and molluscan adductor muscles. When these light chains are combined with desensitized scallop myofibrils the electron paramagnetic resonance spectra of Mn2+ bound to the resultant hybrids are dominated by the signal from the non-specific site of the foreign regulatory light chain.  相似文献   

18.
The light chains of scallop myosin as regulatory subunits   总被引:27,自引:0,他引:27  
In molluscan muscles contraction is regulated by the interaction of calcium with myosin. The calcium dependence of the aotin-activated ATPase activity of scallop myosin requires the presence of a specific light chain. This light chain is released from myosin by EDTA treatment (EDTA-light chains) and its removal desensitizes the myosin, i.e. abolishes the calcium requirement for the actin-activated ATPase activity, and reduces the amount of calcium the myosin binds; the isolated light chain, however, does not bind calcium and has no ATPase activity. Calcium regulation and calcium binding is restored when the EDTA-light chain is recombined with desensitized myosin preparations. Dissociation of the EDTA-light chain from myosin depends on the concentration of divalent cations; half dissociation is reached at about 10?5 M-magnesium or 10?7 M-calcium concentrations. The EDTA-light chain and the residual myosin are fairly stable and the components may be kept separated for a day or so before recombination.Additional light chains containing half cystine residues (SH-light chains) are detached from desensitized myosin by sodium dodecyl sulfate. The EDTA-light chains and the SH-light chains have a similar chain weight of about 18,000 daltons; however, they differ in several amino acid residues and the EDTA-light chains contain no half cystine. The SH-light chains and EDTA-light chains have different tryptic fingerprints. Both light chains can be prepared from washed myofibrils.Densitometry of dodecyl sulfate gel electrophoresis bands and Sephadex chromatography in sodium dodecyl sulfate indicate that there are three moles of light chains in a mole of purified myosin, but only two in myosin treated with EDTA. The ratio of the SH-light chains to EDTA-light chains was found to be two to one in experiments where the total light-chain complements of myosin or myofibril preparations were carboxymethylated. A similar ratio was obtained from the densitometry of urea-acrylamide gel electrophoresis bands. We conclude that a myosin molecule contains two moles of SH-light chain and one mole of EDTA-light chain, and that the removal of a single EDTA-light chain completely desensitizes scallop myosin.Heavy meromyosin and S-1 subfragment can be prepared from scallop myosin. Both of these preparations bind calcium and contain light chains in significant amounts. The heavy meromyosin of scallop is extensively degraded; the S-1 preparation, however, is remarkably intact. Significantly, heavy meromyosin has a calcium-dependent actin-activated ATPase while the S-1 does not require calcium and shows high ATPase activity in its absence. These results suggest that regulation involves a co-operativity between the two globular ends of the myosin.Desensitized scallop myosin and scallop S-1 preparations can be made calcium sensitive when mixed with rabbit actin containing the rabbit regulatory proteins. This result makes it unlikely that specific light chains of myosin are involved in the regulation of the vertebrate system.The fundamental similarity in the contractile regulation of molluscs and vertebrates is that interaction between actin and myosin in both systems requires a critical level of calcium. We propose that the difference in regulation of these systems is that the interaction between myosin and actin is prevented by blocking sites on actin in the case of vertebrate muscles, whereas in the case of molluscan muscles it is the sites on myosin which are blocked in the absence of calcium.  相似文献   

19.
Electron microscopy of cross-linked scallop myosin   总被引:1,自引:0,他引:1  
The N-terminal regions of the regulatory light chains on the two heads of scallop myosin can be cross-linked to one another. Electron microscopy of cross-linked myosin molecules, and of dimers of myosin subfragment-1 produced by digesting them with papain, shows that the site of cross-linking is very close to the head-rod junction.  相似文献   

20.
Chymotryptic digestability of scallop myosin was studied by measuring (a) changes in the gel electrophoretic pattern and (b) production of the soluble fraction obtained by centrifugation. Chymotryptic digestion of essential light chain (SH-LC) was strongly inhibited by association of regulatory light chain (R-LC) with myosin. This is in agreement with the observation of Stafford et al. (Biochemistry 18, 5273 (1979]. SH-LC and R-LC were both more resistant to the chymotryptic digestion when R-LCs were associated with myosin in the presence of calcium than when they dissociated from myosin in the presence of EDTA. In contrast, heavy chains of scallop myosin were digested more quickly in the presence of calcium than EDTA. This suggests that association of R-LC induces reversible changes in the heavy chain conformation, which lead to an increase in the chymotryptic digestability of heavy chains. The chymotryptic digestability of scallop myosin increased in two distinct phases as the calcium concentration in the digestion medium was increased, but monophasically as the magnesium concentration was increased. The magnesium increased the digestability by approximately half as much as did calcium. These findings suggest two types of attachment between regulatory light chains and desensitized myosin: one mediated specifically by low concentrations of calcium ions, the second by higher concentrations of either calcium or magnesium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号