首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Members of histone H1 family bind to nucleosomal and linker DNA to assist in stabilization of higher‐order chromatin structures. Moreover, histone H1 is involved in regulation of a variety of cellular processes by interactions with cytosolic and nuclear proteins. Histone H1, composed of a series of subtypes encoded by distinct genes, is usually differentially expressed in specialized cells and frequently non‐randomly distributed in different chromatin regions. Moreover, a role of specific histone H1 subtype might be also modulated by post‐translational modifications and/or presence of polymorphic isoforms. While the significance of covalently modified histone H1 subtypes has been partially recognized, much less is known about the importance of histone H1 polymorphic variants identified in various plant and animal species, and human cells as well. Recent progress in elucidating amino acid composition‐dependent functioning and interactions of the histone H1 with a variety of molecular partners indicates a potential role of histone H1 polymorphic variation in adopting specific protein conformations essential for chromatin function. The histone H1 allelic variants might affect chromatin in order to modulate gene expression underlying some physiological traits and, therefore could modify the course of diverse histone H1‐dependent biological processes. This review focuses on the histone H1 allelic variability, and biochemical and genetic aspects of linker histone allelic isoforms to emphasize their likely biological relevance.  相似文献   

3.
H2A.Z是组蛋白H2A的变异体之一,是高度保守的组蛋白变异体,参与保护常染色体,防止形成异染色质;并且与转录调节、抗沉默、沉默和基因组稳定性有关。组蛋白变异体H2A.Z可能与染色体形成独立的结构域,从而调节染色质结构功能。但是,H2A.Z对染色体结构功能的作用机制还不是很清楚。组蛋白变异体H2A.Z和它的表观遗传修饰对染色体动态结构和功能起重要的作用。该文将对组蛋白变异体H2A.Z进行综述。  相似文献   

4.
5.
6.
7.
目的为探究连接组蛋白H1在精子发生过程染色体重构中的功能,了解一共有多少种连接组蛋白H1参与各期生精细胞的染色体的构建。方法分离高纯度的SD大鼠的各期生精细胞,提取组蛋白,应用SDS-PAGE分离组蛋白的各组分,组蛋白(H1)经过蛋白酶(Glu-c和Arg-c)酶切,应用质谱进行检测。结果鉴定了组蛋白H1的体细胞亚型(H1.1-H1.5)和睾丸特异的连接组蛋白亚型(H1t)。组蛋白H1t分别表达在精原细胞,精母细胞和圆形精子细胞中。结论大鼠精子发生过程中,其主要连接组蛋白H1的种类是:H1.1-H1.5和H1t。  相似文献   

8.
Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA‐based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z‐nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate‐specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z‐specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome‐wide mapping reveals that PWWP2A binds selectively to H2A.Z‐containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C‐terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z‐specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development.  相似文献   

9.
Amino acid analyses of nuclear basic proteins of an anuran amphibian, Rana catesbeiana, revealed that they are comprised of a full set of core histones and three types of lysine-rich, sperm-specific proteins. On the basis of their amino-acid compositions and partial amino-acid sequences of their trypsin-resistant cores, the sperm-specific proteins could be defined as members of the histone H1 family. Both micrococcal nuclease digestion and electron microscopy indicated that sperm chromatin consists of nucleosomal and fibrillar DNA structures which are irregularly interspersed with each other. When sperm nuclei were incubated with nucleoplasmin, nuclei decondensed to some extent, and the sperm-specific H1s were removed, but not completely. The residual sperm-specific histone H1 variants were also found in reconstituted male pronuclear chromatin, comprising regularly spaced nucleosomes. We conclude that sperm-specific histone H1 variants are essential for chromatin condensation in the sperm nuclei, but that their complete removal is not necessary for the remodeling into somatic chromatin that takes place after fertilization. Mol. Reprod. Dev. 47:181–190, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
黄星卫  程香荣  王楠  张雨薇  廖辰  金连弘  雷蕾 《遗传》2018,40(3):186-196
组蛋白是真核生物中一类进化上相对保守的蛋白质。由组蛋白八聚体及缠绕其上的DNA构成的核小体是真核生物染色质的基本组成单位。核小体使DNA保持固缩状态,既能维持基因组的稳定性,又能保证DNA序列可以正确地进行复制、转录、重组和修复。核小体调控细胞的生物过程除了通过组蛋白翻译后修饰,还可以通过组蛋白变体替换的方式进行。研究发现,组蛋白H3变体H3.3与常规组蛋白H3尽管仅有几个氨基酸的区别,但H3.3却能由特异的分子伴侣介导,整合进入染色质的特定区域,从而发挥不同的作用。同时,H3.3作为一种母源因子在正常受精和体细胞核移植等细胞重编程过程中也发挥着重要作用。本文总结了H3.3的结构特点和富集情况,探讨了特异的分子伴侣及其在细胞重编程中的作用,以期为提高体细胞重编程效率提供新思路,为体细胞重编程的应用奠定基础。  相似文献   

11.
Histones are vital structural proteins of chromatin that influence its dynamics and function. The tissue-specific expression of histone variants has been shown to regulate the expression of specific genes and genomic stability in animal systems. Here we report on the characterization of five histone H3 variants expressed in Lilium generative cell. The gcH3 and leH3 variants show unique sequence diversity by lacking a conserved lysine residue at position 9 (H3K9). The gH3 shares conserved structural features with centromeric H3 of Arabidopsis. The gH3 variant gene is strongly expressed in generative cells and gH3 histone is incorporated in to generative cell chromatin. The lysine residue of H3 at position 4 (H3K4) is highly methylated in the nuclei of generative cells of mature pollen, while methylation of H3K4 is low in vegetative cell nuclei. Taken together, these results suggest that male gametic cells of Lilium have unique chromatin state and histone H3 variants and their methylation might be involved in gene regulation of male gametic cells.Accession numbers for the sequence data The sequences reported in this paper have been deposited in the DDBJ database gcH3 GC1174 (accession no. AB195644), gH3 GC1008 (accession no. AB195646), leH3 GC1126 (accession no. AB195648), soH3-1 GC0075 (accession no. AB195650), soH3-2 GC1661 (accession no. AB195652), genomic sequence of gcH3 (accession no. AB195645), genomic sequence of gH3 (accession no. AB195647), genomic sequence of leH3 (accession no. AB195649), genomic sequence of soH3-2 (accession no. AB195651), genomic sequence of soH3-2 (accession no. AB195653).  相似文献   

12.
在真核生物染色质中,H2A.Z是高度保守的组蛋白变异体,与转录调控、基因组的稳定性密切相关。为了探讨组蛋白修饰、DNA弯曲度与H2A.Z核小体定位三者之间的关联,在得到实验所测的相关数据后,利用MINE算法并结合皮尔逊相关系数在酵母全基因组的转录起始位点周围探讨了三者间的线性与非线性关系。其中MIC算法可以定量的得出数据之间关联度大小的值,用于衡量数据之间是否存在着关联,而皮尔逊相关系数则用于检查是否为线性关联。结果除了发现大部分组蛋白修饰种类和核小体定位之间存在着线性关联外,还探测到有两种组蛋白修饰数据(H4ac修饰与GCN4修饰)和核小体定位数据之间存在着以往未发现的非线性关系(大致呈正余弦函数),并从数据的生物背景(组蛋白修饰与核小体位置)上探讨了出现非线性现象的原因。  相似文献   

13.
14.
Mature rod photoreceptor cells contain very small nuclei with tightly condensed heterochromatin. We observed that during mouse rod maturation, the nucleosomal repeat length increases from 190 bp at postnatal day 1 to 206 bp in the adult retina. At the same time, the total level of linker histone H1 increased reaching the ratio of 1.3 molecules of total H1 per nucleosome, mostly via a dramatic increase in H1c. Genetic elimination of the histone H1c gene is functionally compensated by other histone variants. However, retinas in H1c/H1e/H10 triple knock-outs have photoreceptors with bigger nuclei, decreased heterochromatin area, and notable morphological changes suggesting that the process of chromatin condensation and rod cell structural integrity are partly impaired. In triple knock-outs, nuclear chromatin exposed several epigenetic histone modification marks masked in the wild type chromatin. Dramatic changes in exposure of a repressive chromatin mark, H3K9me2, indicate that during development linker histone plays a role in establishing the facultative heterochromatin territory and architecture in the nucleus. During retina development, the H1c gene and its promoter acquired epigenetic patterns typical of rod-specific genes. Our data suggest that histone H1c gene expression is developmentally up-regulated to promote facultative heterochromatin in mature rod photoreceptors.  相似文献   

15.
Summary— Trypanosoma brucei brucei, a protozoan parasite of wild and domestic animals in Africa, is related to the pathogenic agent of human sleeping sickness. Four H1 histone proteins were isolated from nuclei of procyclic culture forms and cleaved with proteases. Amino acid sequence analysis of purified fragments indicated the presence of variants which displayed sequence identities as compared to the C-terminal domain of human H1. Substitutions of amino acids and posttranslational modifications of the histones in iT b brucei H1 may influence protein conformation and histone-histone as well as histone-DNA interactions in the chromatin of the parasite. Digestion of soluble chromatin with immobilized trypsin at low and high ionic strengths indicated an internal localization of H1 in the condensed chromatin. The influence of histone H1 of T b brucei on the compaction pattern of the chromatin was investigated by dissociation and reconstitution experiments. Electron microscopy revealed that trypanosome H1 was able to induce condensation of the chromatin of the parasite and of rat liver into dense tangles. After dephosphorylation of H1, 30 nm fibers were induced in rat liver chromatin, while the resulting fibers were distinctly thinner in T b brucei. It can be concluded that the absence of 30 nm fibers in T b brucei chromatin cannot be explained by the divergent variants and posttranslational phosphorylations of H1 only but rather by the influence of both, the divergent core histones, previously described, and H1 properties.  相似文献   

16.
17.
In this review, the structural aspects of linker H1 histones are presented as a background for characterization of the factors influencing their function in animal and human chromatin. The action of H1 histone variants is largely determined by dynamic alterations of their intrinsically disordered tail domains, posttranslational modifications and allelic diversification. The interdependent effects of these factors can establish dynamic histone H1 states that may affect the organization and function of chromatin regions.  相似文献   

18.
19.
Ustilago maydis is a haploid basidiomycete with single genes for two distinct histone H3 variants. The solitary U1 gene codes for H3.1, predicted to be a replication-independent replacement histone. The U2 gene is paired with histone H4 and produces a putative replication-coupled H3.2 variant. These predictions were evaluated experimentally. U2 was confirmed to be highly expressed in the S phase and had reduced expression in hydroxyurea, and H3.2 protein was not incorporated into transcribed chromatin of stationary phase cells. Constitutive expression of U1 during growth produced ~25% of H3 as H3.1 protein, more highly acetylated than H3.2. The level of H3.1 increased when cell proliferation slowed, a hallmark of replacement histones. Half of new H3.1 incorporated into highly acetylated chromatin was lost with a half-life of 2.5 h, the fastest rate of replacement H3 turnover reported to date. This response reflects the characteristic incorporation of replacement H3 into transcribed chromatin, subject to continued nucleosome displacement and a loss of H3 as in animals and plants. Although the two H3 variants are functionally distinct, neither appears to be essential for vegetative growth. KO gene disruption transformants of the U1 and U2 loci produced viable cell lines. The structural and functional similarities of the Ustilago replication-coupled and replication-independent H3 variants with those in animals, in plants, and in ciliates are remarkable because these distinct histone H3 pairs of variants arose independently in each of these clades and in basidiomycetes.  相似文献   

20.
The nucleosome, the fundamental structural unit of chromatin, contains an octamer of core histones H3, H4, H2A, and H2B. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function, analysis of histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2A and H2B variants derived from Jurkat cells. A combination of mass spectrometric techniques, HPLC separations, and enzymatic digestions using endoproteinase Glu-C, endoproteinase Arg-C, and trypsin were used to identify histone H2A and H2B subtypes and their modifications. We identified nine histone H2A and 11 histone H2B subtypes, among them proteins that only had been postulated at the gene level. The two main H2A variants, H2AO and H2AC, as well as H2AL were either acetylated at Lys-5 or phosphorylated at Ser-1. For the replacement histone H2AZ, acetylation at Lys-4 and Lys-7 was found. The main histone H2B variant, H2BA, was acetylated at Lys-12, -15, and -20. The analysis of core histone subtypes with their modifications provides a first step toward an understanding of the functional significance of the diversity of histone structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号