首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
NaCl胁迫下野生和栽培大豆幼苗体内离子的再转运   总被引:18,自引:0,他引:18  
采用NaCl根际处理和叶面饲喂^22Na方法,研究了野生大豆(Glycine soja)——耐盐的BB52、盐敏感的N23232和栽培大豆(Glycine max)——较耐盐的Lee68幼苗在盐胁迫及解除过程中对Na^ 、Cl^-的吸收和再转运。结果表明,在NaCl根际处理12h过程中,BB52和Lee68幼苗根对Na^ 、Cl^-吸收和向茎、叶的运输逐渐增加,10h时趋于稳定,Na^ 、Cl^-含量高低顺序是根>茎>叶。但N23232的Na^ 、Cl^-含量则是茎>根>叶。在用NaCl对根处理10h后再解除NaCl处理的0~36h内,BB52吸收的Na^ 、Cl^-较多地留于根部或转运至根茎过渡区,叶中较少。N23232吸收的Na^ 较多地转运至茎部,而Cl^-含量在幼苗各部分无差异。叶片饲喂^22Na 10h后,BB52吸收^22Na较N23232多,并较多地向根部运输。从离子再转运角度讨论了BB52的耐盐性。  相似文献   

2.
栽培大豆和野生大豆耐盐性及离子效应的比较   总被引:36,自引:0,他引:36  
以国际上常用的耐盐大豆(Glycine max L.)品种Lee68为对照,在发芽期和苗期两个阶段,利用发芽指数、指害指数和耐盐系数等指标对一年生具盐腺野生大豆(Glycine soja L.)和部分栽培大豆(Glycine max L.)及某些野生大豆品系或品种的耐盐性进行了比较,讨论了耐盐指标的可行性。从离子效应方面比较了Na^ 和Cl^-对大豆发芽率的影响,并对具盐腺野生大豆的耐盐机理进行了初步分析。结果表明,大豆品种的耐盐性在发芽期和苗期无一致相关性。轻度等渗胁迫下,Na^ 对种子发芽率的抑制作用大于Cl^-,而重度等渗胁迫下则相反。通过减少由根系吸收的Na^ 、Cl^-向叶片的运输,维持叶片中较高含量的K^ ,减轻盐离子毒害,可能是具盐腺野生大事耐盐的主要生理机制之一。  相似文献   

3.
以较耐盐花生品种‘花育25’、‘鲁花12’和盐敏感品种‘海花1’、‘花育20’为材料,采用盆栽试验,设置0、1.0、2.0、3.0 g/kg土壤NaCl胁迫浓度梯度,测定其净光合速率、表观量子效率、气孔导度等光合特性,以及抗氧化酶活性和渗透调节物质含量等指标,明确NaCl胁迫条件下不同耐盐性花生品种光合和生理生化特性的适应特征。结果表明:(1)NaCl胁迫明显抑制各品种花生叶片光合作用,净光合速率随盐胁迫浓度的升高呈明显降低的趋势。(2)各品种花生叶片净光合速率均先随光照强度的增强而升高,当光强达到一定数值时趋于平稳;光补偿点和光饱点因品种和盐胁迫浓度差异较大,较高的盐胁迫浓度使叶片光补偿点升高,盐敏感品种的光饱和点降低。(3)盐胁迫条件下,各品种叶片表观量子效率和最大净光合速率均随盐胁迫强度的增加呈显著降低趋势,盐敏感品种利用弱光的能力在低盐胁迫下强于耐盐品种,其最大净光合速率在较高盐胁迫浓度(3.0 g/kg)下明显低于耐盐品种,但两类品种的叶片表观量子效率降幅相近(78.65%~88.00%)。(4)在NaCl胁迫下,耐盐品种叶片自由水含量显著高于盐敏感品种;在2.0~3.0 g/kg NaCl胁迫下,耐盐品种叶片SOD、CAT、POD活性和MDA含量的升降幅度均低于盐敏感品种;耐盐品种在NaCl浓度低于2.0 g/kg时的抗氧化能力明显高于盐敏感品种。研究发现,盐胁迫下花生品种抗盐耐逆的主要生理响应特征是提高光补偿点和最大净光合速率,增强叶片持水能力和物质代谢能力,以及提升抗氧化和渗透调节能力。  相似文献   

4.
武玉妹  周强  於丙军 《生态学报》2011,31(22):6669-6676
大豆异黄酮( Soybean isoflavones)是在大豆生长过程中形成并在成熟种子和叶片中积累较多的一类具有生物活性的次生代谢物,通常可作为人们日常生活中的一类营养保健品.研究了外源大豆苷或染料木苷溶液(0.01 mg/L)浸种处理对盐胁迫栽培大豆(N23674品种)和滩涂野大豆(BB52种群)及其经逐代耐盐性筛选的杂交后代(4076株系,F5)幼苗叶片伤害率、光合作用、Na+含量和Na+/K+值、活性氧清除酶活性及内源大豆异黄酮含量等生理指标的影响.结果表明:盐胁迫下,两种外源大豆异黄酮浸种处理均可显著抑制叶片相对电解质渗透率和硫代巴比妥酸反应物(TBARS)含量的上升及净光合速率(Pn)的下降,降低Na+含量和Na+/K+值,增强超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,提高内源大豆异黄酮含量,从而表现对盐害的缓解效应,其中对耐盐性较弱的栽培大豆N23674品种效应更明显.这为大豆异黄酮在大豆耐盐育种、化学调控和盐碱地种植利用等提供了理论依据.  相似文献   

5.
评价、筛选并利用栽培大豆的耐盐种质资源,对开发利用盐渍土具有极其重要的意义。本文从耐盐性评价方法、耐盐的生理生化基础、耐盐的分子生物学基础及耐盐种质的筛选与创新等4方面,对栽培大豆的耐盐性研究进展进行了系统综述。同时对栽培大豆耐盐性研究现存的问题与今后的发展方向进行了讨论,以期为栽培大豆耐盐性研究提供参考。  相似文献   

6.
高粱不同器官生长对NaCl胁迫的响应及其耐盐阈值   总被引:3,自引:0,他引:3  
用砂基培养研究高粱不同器官生长对NaCl胁迫的响应及其耐盐阈值。NaCl胁迫下,独角虎和糖高粱均表现为生长叶叶鞘鲜重下降最大,其次是生长叶叶片、成熟叶叶鞘和叶片变化最小。长期胁迫单株叶片数及叶面积也明显下降。相同胁迫情况下,糖高梁的生长抑制明显大于独角虎。独角虎和糖高粱耐盐阈值分别为135和82mmol/LNaCI。以上结果表明独角虎耐盐能力明显大于糖高粱。讨论了不同器官生长抑制的机制。  相似文献   

7.
鱼腥藻7120响应NaCl胁迫的光合特性   总被引:12,自引:1,他引:12  
NaCl胁迫处理丝状蓝藻鱼腥藻7120后光合特性的变化表明;鱼腥藻7120的净光合放氧速率和呼吸速率随NaCl浓度的程式高而降低,且浓度低于0.4mol/LNaCl时的降幅比高于0.4mol/LNaCl时的降幅小,加入0.4%(W?V)的蔗糖后可提高盐胁迫后的鱼腥藻7120的光合放氧速率,吸收光谱测定结果表明盐胁迫没有改变鱼腥藻7120的光合色素组成,但导致藻胆蛋白的总含量降低,类胡萝卜素含量增加。低温荧光发射光谱测定表明盐胁迫后改变了光能在两个光系统之间的分配。由藻胆蛋白吸收的光能向光Ⅱ传递受阻。荧光动力学分析表明光系统Ⅱ的光化学效率随盐浓度的增加而降低。表现出与光合放氧速率的一致性。  相似文献   

8.
野生大豆与栽培大豆rDNA ITS1区的研究   总被引:9,自引:0,他引:9  
采用PCR 技术从野生大豆(Glycine soja)、半野生大豆(G.gracillis)、多年生野生大豆(G.tomentella、G.tabacina)和栽培大豆(G.m ax)的两个品种UNION、文丰7 中扩增和克隆了rDNA第一转录间隔区(ITS1)。其在G.m ax 基因组中的拷贝数约为2×103。序列分析表明G.soja、G.gracillis、G.m ax 中的G/C含量为61.40% ,而G.tabacina和G.tom entella的G/C含量分别为58.11% 和59.01% ,与绿豆G/C含量(59.81% )相近。G.tabacina的G/C含量是已知的植物中ITS1 最低的。最大同源性分析表明,大豆属植物ITS1 的同源程度很高,同其近缘属绿豆的同源性明显高于其它作物。同时分析了栽培、多年生和一年生野生大豆间的亲缘关系。另外还发现在已知的植物ITS1 序列中均含有GACCCGCGAA 及GCGCCAAGGAA 两个区段  相似文献   

9.
野生大豆资源对大豆疫病抗病性和耐病性鉴定   总被引:1,自引:0,他引:1  
大豆疫病是大豆重要病害之一,在世界范围内导致严重经济损失。防治大豆疫病最有效方法是利用抗病或耐病品种。筛选抗性资源是发掘抗性基因和抗病育种的基础。本研究鉴定了野生大豆资源对大豆疫病的抗病性和耐病性,以期发掘优异抗源。苗期用子叶贴菌块方法鉴定104份野生大豆资源对两个不同毒力的大豆疫霉分离物PSJS2(毒力型:1a,1b,1c,1d,1k,2,3a,3b,3c,4,5,6,7,8)和PS41-1(毒力型:1a,1d,2,3b,3c,4,5,6,7,8)抗性,结果表明33份资源抗PS41-1,35份资源抗PSJS2,其中18份抗两个分离物。在抗病性鉴定基础性上,用菌层接种方法对选择的82份资源进行耐病性鉴定,发现7份高耐病性资源。这些结果表明,野生大豆中可能含有新的大豆疫病抗病和(或)耐病资源,这些抗病或耐病资源可以用于未来大豆抗病育种,以丰富大豆对大豆疫病的抗性遗传基础。  相似文献   

10.
野大豆(Glycine soja Sieb. et Zucc.)是栽培大豆(G.max(L.)Merr.)的祖先,在遗传育种研究中具有重要意义。本研究以野大豆为实验材料,通过检测快速叶绿素荧光和820 nm光反射来研究盐胁迫对光系统化学活性的影响。结果显示,盐胁迫下,野大豆幼苗叶片叶绿素a含量显著降低,快速叶绿素荧光诱导动力学曲线(OJIP)发生显著变化,JIP-test参数中性能指标PIABS和PItotal、比能量通量参数RC/ABS、TRo/RC、ETo/RC和REo/RC均降低。单位反应中心耗散的能量DIO/RC增加。同时,盐胁迫显著降低量子产量和效率参数ψEo、φEo、δRo和φRo。820 nm光反射MR/MRO曲线也发生变化,其变化时间间隔与OJIP一致。同时,盐胁迫也导致野大豆幼苗叶片丙二醛(MDA)含量显著增加,渗透调节物质和抗氧化酶活性发生显著变化。  相似文献   

11.
Seed size is one of the important factors of soybean [Glycine max (L.) Merrill] yield. There have been lots of reports about genetic effects and physiology—ecological researches on seed size, but the genetic behaviors of genes during seeds development were rarely discussed. Analysis of main genetic effects for fresh seed size (FSS) and dry seed size (DSS) of soybean was conducted with diallel cross data by using a seed genetic model. Analyses of unconditional and conditional variances and correlations were used to evaluate the developmental behavior of soybean. The phenotypic means of FSS and DSS in soybean at eight stages among three generations reached the highest value at 9/6 and 9/13, respectively. The means of FSS decreased dramatically after 9/6, but the means of DSS maintained relatively stable tendency at corresponding periods. The unconditional variance analysis showed that FSS and DSS were controlled by embryo, cytoplasmic and maternal effects in the whole growth period. Genetic effects due to cytoplasmic and maternal effects were relatively important for FSS and DSS at most of the growth periods. Conditional variance analysis showed that genes from different genetic system expressed discontinuously in the whole growth period. The net genetic effects due to cytoplasmic and maternal plant on FSS and DSS were larger than those of embryo effects at most of the growth periods. Different genetic system can affect the relationship of various stages to mature solely or simultaneously. Embryo additive effects at 8/16, embryo dominance effects at 8/9 and 8/16, maternal plant dominance effects at 8/2 and 8/16 could ultimately affect the performance of FSS at maturing stage. Embryo additive effects at 8/2 and 9/13, cytoplasm effects at 8/9, maternal plant dominance effects at 8/2 could ultimately affect the performance of DSS.  相似文献   

12.
Photosynthesis is the largest organic synthesis on Earth, salinity limits crop yield and quality worldwide directly or indirectly related to the decrease in photosynthetic efficiency. The mechanism by which photosynthetic apparatus responds to salt stress is extremely complex and varies with plant genotype, developmental stage, the history of the plant cell and duration of stress imposed. Recent studies have partially revealed the mechanisms from different levels: molecular, physiological and biochemical, morphological; but there is currently no unified mechanism to explain the effect of stress on photosynthesis. This study comprehensively reviews the adaptive mechanism of photosynthetic apparatus under salt stress, summarises methods for increasing the resistance and provides a practical way to increase grain yield in saline soils.  相似文献   

13.
A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated. Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples), in addition to investigating the fine-scale spatial genetic structure within the population. The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88, expected heterozygosity (He) 0.431, Shannon diversity index (I) 0.699, and percentage of polymorphic loci (P) 100%. Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation. The regression model of the four diversity indexes with the change of sample sizes was computed. As a result, 27–52 individuals can reach 95% of total genetic variability of the population. Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m. The study provided a scientific basis for the sampling strategy of wild soybean populations. __________ Translated from Journal of Fudan University (Natural Science), 2006, 45(3): 322–327 [译自: 复旦学报 (自然科学版)]  相似文献   

14.
A total of 155 nodule isolates that originated from seven sites in Northwest China were characterized by PCR-RFLP of the 16S rRNA gene and sequence analysis of multiple core genes (16S rRNA, recA, atpD, and glnII) in order to investigate the diversity and biogeography of Glycine soja-nodulating rhizobia. Among the isolates, 80 were Ensifer fredii, 19 were Ensifer morelense, 49 were Rhizobium radiobacter, and 7 were putative novel Rhizobium species. The phylogenies of E. fredii and E. morelense isolates in a concatenate tree (assembly of all housekeeping genes) were generally consistent with those in individual gene trees. However, incongruence was found in the phylogenies of the different genes of Rhizobium isolates, indicating that lateral transfer or recombination possibly occurred in these gene loci. Despite their species identity, all the isolates in this study formed a single lineage related to E. fredii in nodAand nifH gene phylogenies, which also indicated that the symbiotic genes were laterally transferred between different species. Biogeographic patterns were found at the species and strain genomic type levels, as revealed by BOXA1R fingerprinting, demonstrating that the evolution of rhizobial populations in different geographic locations was related to soil types, altitude and spatial effects. This study is the first to report that E. morelense, R. radiobacter, and Rhizobium sp. are microsymbionts of G. soja, as well as showing that the diversity of G. soja rhizobia is enhanced and new rhizobia have evolved in Northwest China.  相似文献   

15.
Glyphosate is a broad spectrum, non-selective herbicide which has been widely used for weed control. Much work has focused on elucidating the high accumulation of glyphosate in shoot apical bud (shoot apex). However, to date little is known about the molecular mechanisms of the sensitivity of shoot apical bud to glyphosate. Global gene expression profiling of the soybean apical bud response to glyphosate treatment was performed in this study. The results revealed that the glyphosate inhibited tryptophan biosynthesis of the shikimic acid pathway in the soybean apical bud, which was the target site of glyphosate. Glyphosate inhibited the expression of most of the target herbicide site genes. The promoter sequence analysis of key target genes revealed that light responsive elements were important regulators in glyphosate induction. These results will facilitate further studies of cloning genes and molecular mechanisms of glyphosate on soybean shoot apical bud.  相似文献   

16.
The aim of this work was to determine the relative contributions of ADPglucose and UDPglucose to starch synthesis in two non-photosynthetic tissues, the developing club of the spadix of Arum maculatum and suspension cultures of Glycine max. Rates of starch accumulation during growth are compared with estimates of the maximum catalytic activities in vitro of ADPglucose starch synthase, ADPglucose pyrophosphorylase, UDPglucose pyrophosphorylase and UDPglucose starch synthase. The latter could only be measured at high concentrations (10–30 mM) of UDPglucose. Clubs of Arum and cells of Glycine contained 292 and 6.8 nmol UDPglucose per gram fresh weight, respectively. The corresponding figures for ADPglucose were 29 and 0.4. From the above data it is argued that in both Arum club and Glycine cells the activity of UDPglucose starch synthase is too low to make any quantitatively significant contribution to starch synthesis. The activities of ADPglucose starch synthase and pyrophosphorylase were high enough to mediate the observed rates of starch accumulation. It is suggested that starch synthesis in these tissues is via ADPglucose.  相似文献   

17.
野生大豆与栽培大豆种子差异蛋白质组学研究   总被引:2,自引:0,他引:2       下载免费PDF全文
运用蛋白质组学方法比较研究3个野生大豆(Glycinesoja)和3个栽培大豆(Glycinemax)的种子贮藏蛋白差异情况.结果发现,在考马斯亮蓝染色的双向电泳pH4~7的胶上,经过PDQuest图像分析软件平均可检测到550个左右的蛋白质点.进一步分析发现,表达量变化2.5倍以上的点有10个,其中大部分蛋白质仅在栽培大豆中检测到.对这10个蛋白质点进行了胶内酶解,用基质辅助激光解析电离飞行时间质谱测定均得到了肽质量指纹图谱.搜索大豆UniGene库和NCBI库共鉴定出5个蛋白质,主要是与大豆抗性、抗营养以及种子萌发相关的蛋白质,包括大豆血凝素,种子成熟蛋白PM24,糖结合蛋白,胰蛋白酶抑制剂p20以及成熟多肽.对这些蛋白质可能的作用进行了讨论.  相似文献   

18.
At the present, no secreted phospholipase A2 (sPLA2) from soybean (Glycine max) was investigated in detail. In this work we identified five sequences of putative secreted sPLA2 from soybean after a BLAST search in G. max database. Sequence analysis showed a conserved PA2c domain bearing the Ca2+ binding loop and the active site motif. All the five mature proteins contain 12 cysteine residues, which are commonly conserved in plant sPLA2s. We propose a phylogenetic tree based on sequence alignment of reported plant sPLA2s including the novel enzymes from G. max. According to PLA2 superfamily, two of G. max sPLA2s are grouped as XIA and the rest of sequences as XIB, on the basis of differences found in their molecular weights and deviating sequences especially in the N- and C-terminal regions of the isoenzymes. Furthermore, we report the cloning, expression and purification of one of the putative isoenzyme denoted as GmsPLA2-XIA-1. We demonstrate that this mature sPLA2 of 114 residues had PLA2 activity on Triton:phospholipid mixed micelles and determine the kinetic parameters for this system. We generate a model based on the known crystal structure of sPLA2 from rice (isoform II), giving first insights into the three-dimensional structure of folded GmsPLA2-XIA-1. Besides describing the spatial arrangement of highly conserved pair HIS-49/ASP-50 and the Ca+2 loop domains, we propose the putative amino acids involved in the interfacial recognition surface. Additionally, molecular dynamics simulations indicate that calcium ion, besides its key function in the catalytic cycle, plays an important role in the overall stability of GmsPLA2-XIA-1 structure.  相似文献   

19.
Spermidine synthase (EC 2.5.1.16) was purified to homogeneity for the cytosol of soybean (Glycine max) axes using ammonium sulfate fractionation and chromatography on DEAE-Sephacel, Sephacryl S-300, ω-aminooctyl-Sepharose and ATPA-Sepharose. The molecular mass of the enzyme estimated by gel filtration and SDS–PAGE is 74 kDa. Cadaverin and 1,6-diaminohexane could not replace putrescine as the aminopropyl acceptor. Kinetic behaviors of the substrate are consistent with a ping pong mechanism. The kinetic mechanism is further supported by direct evidence confirming the presence of an aminopropylated enzyme and identification of product, 5′-deoxy-5′-methylthioadenosine, prior to adding putrescine. The Km values for decarboxylated S-adenosylmethionine and putrescine are 0.43 μM and 32.45 μM, respectively. Optimum pH and temperature for the enzyme reaction are 8.5 and 37°C, respectively. The enzyme activity is inhibited by N-ethylmaleimide and DTNB, but stimulated by Co2+, Cu2+ and Ca2+ significantly, suggesting that these metal ions could be the cellular regulators in polyamine biosynthesis.  相似文献   

20.
野生稻和栽培稻的随机多态DNA(RAPD)分析   总被引:9,自引:0,他引:9  
应用 RAPD方法对药用野生稻、普通野生稻、粳稻和籼稻进行基因组多态性分析。 1 2个随机引物共扩增出 1 3 2条 RAPD带 ,片段大小在 3 0 0~ 3 5 0 0 bp之间 ,其中有 1 0 6条表现出多态性 ,占总扩增片段的86.4%。根据遗传距离分析 ,用 UPGMA法构建了聚类树状图 ,结果表明 ,普通野生稻的遗传特性比药用野生稻更接近于栽培稻。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号