首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tempol has been shown to protect experimental animals from injuries associated with excessive nitric oxide production. In parallel, tempol decreased the levels of protein-3-nitrotyrosine in the injured tissues, suggesting that it interacted with nitric oxide-derived oxidants such as nitrogen dioxide and peroxynitrite. Relevantly, a few recent studies have shown that tempol catalytically diverts peroxynitrite/carbon dioxide reactivity toward phenol from nitration to nitrosation. To examine whether this shift occurs in biological environments, we studied the effects of tempol (10-100 microM) on peroxynitrite/carbon dioxide (1 mM/2 mM) reactivity toward proteins, native bovine serum albumin (BSA) (0.5-0.7 cys/mol) and reductively denatured BSA (7-19 cys/mol), and cells (J774 macrophages). Although not a true catalyst, tempol strongly inhibited protein-tyrosine nitration (70-90%) and protein-cysteine oxidation (20-50%) caused by peroxynitrite/carbon dioxide in BSA, denatured BSA, and cells while increasing protein-cysteine nitrosation (200-400%). Tempol consumption was attributed mainly to its reaction with protein-cysteinyl radicals. Most of the tempol, however, reacted with the radicals produced from peroxynitrite/carbon dioxide, that is, nitrogen dioxide and carbonate radical anion. Accordingly, tempol decreased the yields of BSA-cysteinyl and BSA-tyrosyl/tryptophanyl radicals, as well their decay products such as protein-3-nitrotyrosine. The parallel increase in protein-nitrosocysteine yields demonstrated that part of the peroxynitrite is oxidized to nitric oxide by the oxammonium cation produced from tempol oxidation by peroxynitrite/carbon dioxide-derived radicals. Protein-nitrosocysteine formation was shown to occur by radical and nonradical mechanisms in studies with a protein-cysteinyl radical trapper. These studies may contribute to the understanding of the protective effects of tempol in animal models of inflammation.  相似文献   

2.
Activated leukocytes generate the potent oxidants HOCl and HOBr via the formation of H(2)O(2) and the release of peroxidase enzymes (myeloperoxidase, eosinophil peroxidase). HOCl and HOBr are potent microbiocidal agents, but excessive or misplaced production can cause tissue damage and cell lysis. In this study it is shown that HOBr induces red blood cell lysis at approximately 10-fold lower concentrations than HOCl, whereas with monocyte (THP1) and macrophage (J774) cells HOCl and HOBr induce lysis at similar concentrations. The role of radical formation during lysis has been investigated by EPR spin trapping, and it is shown that reaction of both oxidants with each cell type generates cell-derived radicals. Red blood cells exposed to nonlytic doses of HOCl generate novel nitrogen-centered radicals whose formation is GSH dependent. In contrast, HOBr gives rise to nitrogen-centered, membrane-derived protein radicals. With lytic doses of either oxidant, protein (probably hemoglobin)-derived, nitrogen-centered radicals are observed. Unlike the red blood cells, treatment of monocytes and macrophages with HOCl gives significant radical formation only under conditions where cell lysis occurs concurrently. These radicals are nitrogen-centered, cell-protein-derived species and have parameters identical to those detected with red blood cells and HOBr. Exposure of these cells to HOBr did not give detectable radicals. Overall these experiments demonstrate that HOCl and HOBr react with different selectivity with cellular targets, and that this can result in radical formation. This radical generation can precede, and may play a role in, cell lysis.  相似文献   

3.
Proteins are major initial cell targets of hydroxyl free radicals   总被引:2,自引:0,他引:2  
The principal aim of the current study was to identify the initial cell targets of hydroxyl free radicals. Our recent report showed that proteins were oxidized before lipids in U937 cells exposed to peroxyl radicals. Extending this finding, we investigated whether a similar oxidation sequence occurs in other lines of cells, whether hydroxyl radicals can also initiate cell protein oxidation, and whether DNA fragmentation is an early event in radical-induced cell damage. Mouse myeloma Sp2/0-Ag14 and U937 cells were exposed to hydroxyl radicals generated in solution by gamma irradiation and the formation of protein peroxides measured by a ferric-xylenol orange assay. No lipid peroxidation or DNA damage was evident by the time of significant formation of protein peroxides. DNA fragmentation was detectable after prolonged incubation at 37 degrees C and was characteristic of enzymatic action rather than of random scission by the radicals. Yields of protein hydroperoxides in the irradiated cells were independent of composition of the medium, suggesting that only the radicals produced within the cells or immediately near the cell surface were effective in oxidizing the cell proteins. The results are consistent with the hypothesis that proteins are major initial targets of free radicals in cells and suggest that treatments leading to the prevention of protein oxidation or to harmless reduction of protein peroxides is likely to result in alleviation of radical-induced biological damage.  相似文献   

4.
Our previous study showed that active oxygen radicals generated from a Fenton system and a xanthine plus xanthine oxidase system caused serious loss of in vivo bioactivity of recombinant human erythropoietin (EPO), a highly glycosylated protein. In the present study, we characterized the oxidative modifications to the protein and carbohydrate moiety of EPO, which lead to a reduction of its bioactivity. In vitro bioactivity was reduced when EPO was treated with oxygen radi cals generated from a Fenton system in the presence of 0.016 mM H202, and the reduction was directly proportional to the loss of in vivo bioactivity. SDS-PAGE analysis showed that dimer formation and degradation was observed under more severe conditions (Fenton reaction with 0.16 mM H202). The tryptophan destruction was detected at 0.016 mM H2O2 and well correlated with the loss of in vitro bioactivity, whereas loss of other amino acids were occurred under more severe conditions. Treatment with the Fenton system did not result in any specific damage on the carbohydrate moiety of EPO, except a reduction of sialic acid content under severe condition. These results suggest that active oxygen radicals mainly react with the protein moiety rather than the carbohydrate moiety of EPO. Destruction of tryptophan residues is the most sensitive marker of oxidative damage to EPO, suggesting the importance of tryptophan in the active EPO structure. Deglycosylation of EPO caused an increase of susceptibility to oxygen radicals compared to intact EPO. The role of oligosaccharides in EPO may be to protect the protein structure from active oxygen radicals.  相似文献   

5.
The results of this study suggest that the well-documented loss of GSH and ascorbate in organisms under oxidative stress may be mainly due to their reactions with protein radicals and/or peroxides. Protein hydroperoxides were generated in HL-60 cells exposed to radiation-generated hydroxyl radicals. We found for the first time evidence of chain peroxidation of the proteins in cells, with each hydroxyl radical leading to the formation of about 10 hydroperoxides. Protein peroxidation showed a lag, probably due to the endogenous antioxidant enzymes, with simultaneous loss of the intracellular GSH. Enhancement of the GSH levels by N-acetylcysteine decreased the formation of hydroperoxides, while treatment with l-buthionine sulfoximine had the opposite effect. The effect of variation of GSH levels on the formation of the peroxidized proteins is explained primarily by reduction of the protein hydroperoxides by GSH. Loading of the cells with ascorbate resulted in reduction of the amounts of protein hydroperoxides generated by the radiation, which was proportional to the intracellular ascorbate concentration. In contrast to the GSH, inhibition of protein hydroperoxide formation in the presence of the high (mM) intracellular ascorbate levels achieved was mainly due to the direct scavenging of hydroxyl radicals by the vitamin.  相似文献   

6.
Monocyte cells are exposed to a range of reactive oxygen species (ROS) when they are recruited to a site of inflammation. In this study, we have examined the damage caused to the monocyte-like cell line U937 by peroxyl radicals and characterised the protective effect of the macrophage synthesised compound 7,8-dihydroneopterin.Exposure of U937 cells to peroxyl radicals, generated by the thermolytic breakdown of 2,2'-azobis(amidinopropane) dihydrochloride (AAPH), resulted in the loss of cell viability as measured by thiazolyl blue (MTT) reduction, and lactate dehydrogenase (LDH) leakage. The major form of cellular damage observed was cellular thiol loss and the formation of reactive protein hydroperoxides. Peroxyl radical oxidation of the cells only caused a small increase in cellular lipid oxidation measured. Supplementation of the media with increasing concentrations of 7,8-dihydroneopterin significantly reduced the cellular thiol loss and inhibited the formation of the protein hydroperoxides. High performance liquid chromatography (HPLC) analysis showed 7,8-dihydroneopterin was oxidised by both peroxyl radicals and preformed protein hydroperoxides to predominately 7,8-dihydroxanthopterin.The possibility that 7,8-dihydroneopterin is a cellular antioxidant protecting macrophage proteins during inflammation is discussed.  相似文献   

7.
绝对定量蛋白质组是指基于蛋白质组学方法对细胞、组织或体液中的蛋白质进行绝对量或浓度测定.目前,常用的绝对定量方法主要有基于同位素稀释法的蛋白质组学绝对定量方法和基于质谱数据统计分析的非标记方法.基于同位素稀释法的绝对定量方法是用已知量的同位素标记物对与其混合的样本蛋白质浓度进行测定.常见的同位素标记物包括:由AQUA法、QconCAT法产生的特异性水解肽段,由PSAQ法、Absolute SILAC法产生的标记蛋白和由PrESTs-SILAC法产生的蛋白抗原表位标签.由于同位素稀释法可以对蛋白质进行准确和精确定量,对于临床疾病的诊断和治疗具有明显的现实意义.本文对同位素稀释法在绝对定量蛋白质组中的研究进展及其优缺点和最新应用进行了评述.  相似文献   

8.
Indolinonic nitroxide radicals efficiently scavenge oxygen- and carbon-centered radicals. They protect lipid and protein systems against oxidative stress, but little is known about their capacity to protect DNA against radical-mediated damage. We compare indolinonic nitroxides and the piperidines TEMPO and TEMPOL for their ability to inhibit strand breaks inflicted on DNA when it is illuminated in vitro in the presence of dibenzoylmethane (DBM) and a relative, Parsol 1789, used as a UVA-absorbing sunscreen. We used spin-trapping EPR to examine the formation of radicals and plasmid nicking assays to evaluate DNA strand breakage. The results have a two-fold interest. First, they show that all the nitroxides tested efficiently prevent DNA damage in a dose-dependent fashion. Vitamin E had no effect under the conditions used. Second, they show that carbon-centered radicals are produced on illumination of DBM and its relative and that their formation is probably responsible for the direct strand breaks found when naked DNA is illuminated in vitro in their presence. Additional work on the ability of sunscreens to enter human cells and their response to the light that penetrates sunscreen-protected skin would be necessary before any conclusion could be drawn as to whether the results reported here are relevant to human use of sunscreens.  相似文献   

9.
We have investigated the influence of the free radical initiator characteristics on red blood cell lipid peroxidation, membrane protein modification, and haemoglobin oxidation. 2,2'-Azobis(2-amidinopropane) (AAPH) and 4,4'-azobis(4-cyanovaleric acid) (ACV) were employed as free radical sources. Both azo-compounds are water-soluble, although ACV presents a lowed hydrophilicity, as evaluated from octanol/water partition constants. At physiological pH, they are a di-cation and a di-anion, respectively.

AAPH and ACV readily oxidise purified oxyhemoglobin in a very efficient free radical-mediated process, particularly for ACV-derived radicals, where nearly one heme moiety was modified per radical introduced into the system, suggesting that negatively charged radicals react preferentially at the heme group. The radicals derived from both azo-compounds lead to different oxidation products. Methemoglobin, hemichromes and choleglobin were produced in AAPH-promoted hemoglobin oxidation, while ACV-derived radicals predominantly form hemichromes, with very low production of choleglobin.

Red cell damage was evaluated at the level of hemoglobin and membrane constituents modification, and was expressed in terms of free radical doses. Before the onset of the lytic process, ACV leads to more lipid peroxidation than AAPH, and induces a moderate oxidation of intracellular Hb. This intracellular oxidation is markedly increased if ACV hydrophilicity is decreased by lowering the pH. On the other hand, AAPH-derived radicals are considerable more efficient in promoting protein band 3 modification and cell lysis, without significant intracellular hemoglobin oxidation. These results show that the lytic process is not triggered by lipid peroxidation or hemichrome formation, and suggest that membrane protein modification is the relevant factor leading to red blood cell lysis.  相似文献   

10.
The peroxidase activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) has been extensively studied in recent years due to its potential relationship to familial amyotrophic lateral sclerosis. The mechanism by which Cu,Zn-SOD/hydrogen peroxide/bicarbonate is able to oxidize substrates has been proposed to be dependent on an oxidant whose nature, diffusible carbonate radical anion or enzyme-bound peroxycarbonate, remains debatable. One possibility to distinguish these species is to examine whether protein targets are oxidized to protein radicals. Here, we used EPR methodologies to study bovine serum albumin (BSA) oxidation by Cu,Zn-SOD/hydrogen peroxide in the absence and presence of bicarbonate or nitrite. The results showed that BSA oxidation in the presence of bicarbonate or nitrite at pH 7.4 produced mainly solvent-exposed and -unexposed BSA-tyrosyl radicals, respectively. Production of the latter was shown to be preceded by BSA-cysteinyl radical formation. The results also showed that hydrogen peroxide/bicarbonate extensively oxidized BSA-cysteine to the corresponding sulfenic acid even in the absence of Cu,Zn-SOD. Thus, our studies support the idea that peroxycarbonate acts as a two-electron oxidant and may be an important biological mediator. Overall, the results prove the diffusible and radical nature of the oxidants produced during the peroxidase activity of Cu,Zn-SOD in the presence of bicarbonate or nitrite.  相似文献   

11.
The contribution of superoxide-mediated injury to oxidative stress is not fully understood. A potential mechanism is the reaction of superoxide with tyrosyl radicals, which either results in repair of the tyrosine or formation of tyrosine hydroperoxide by addition. Whether these reactions occur with protein tyrosyl radicals is of interest because they could alter protein structure or modulate enzyme activity. Here, we have used a xanthine oxidase/acetaldehyde system to generate tyrosyl radicals on sperm whale myoglobin in the presence of superoxide. Using mass spectrometry we found that superoxide prevented myoglobin dimer formation by repairing the protein tyrosyl radical. An addition product of superoxide at Tyr151 was also identified, and exogenous lysine promoted the formation of this product. In our system, reaction of tyrosyl radicals with superoxide was favored over dimer formation with the ratio of repair to addition being approximately 10:1. Our results demonstrate that reaction of superoxide with protein tyrosyl radicals occurs and may play a role in free radical-mediated protein injury.  相似文献   

12.
Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2′-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA.  相似文献   

13.
Immuno-spin trapping is a highly sensitive method for detecting DNA radicals in biological systems. This technique involves three main steps: (i) in situ and real-time trapping of DNA radicals with the nitrone spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), thus forming DMPO-DNA nitrone adducts (referred to here as nitrone adducts); (ii) purification of nitrone adducts; and (iii) analysis of nitrone adducts by heterogeneous immunoassays using Abs against DMPO. In experiments, DMPO is added prior to the formation of free radicals. It diffuses easily through all cell compartments and is present when DNA free radicals are formed as a result of oxidative damage. Due to its low toxicity, DMPO can be used in cells at high enough concentrations to out-compete the normal reactions of DNA radicals, thus ensuring a high yield of DNA nitrone adducts. Because both protein and DNA nitrone adducts are formed, it is important that the DNA be pure in order to avoid misinterpretations. Depending on the model under study, this protocol can be completed in as few as 6 h.  相似文献   

14.
We have investigated the influence of the free radical initiator characteristics on red blood cell lipid peroxidation, membrane protein modification, and haemoglobin oxidation. 2,2′-Azobis(2-amidinopropane) (AAPH) and 4,4′-azobis(4-cyanovaleric acid) (ACV) were employed as free radical sources. Both azo-compounds are water-soluble, although ACV presents a lowed hydrophilicity, as evaluated from octanol/water partition constants. At physiological pH, they are a di-cation and a di-anion, respectively.

AAPH and ACV readily oxidise purified oxyhemoglobin in a very efficient free radical-mediated process, particularly for ACV-derived radicals, where nearly one heme moiety was modified per radical introduced into the system, suggesting that negatively charged radicals react preferentially at the heme group. The radicals derived from both azo-compounds lead to different oxidation products. Methemoglobin, hemichromes and choleglobin were produced in AAPH-promoted hemoglobin oxidation, while ACV-derived radicals predominantly form hemichromes, with very low production of choleglobin.

Red cell damage was evaluated at the level of hemoglobin and membrane constituents modification, and was expressed in terms of free radical doses. Before the onset of the lytic process, ACV leads to more lipid peroxidation than AAPH, and induces a moderate oxidation of intracellular Hb. This intracellular oxidation is markedly increased if ACV hydrophilicity is decreased by lowering the pH. On the other hand, AAPH-derived radicals are considerable more efficient in promoting protein band 3 modification and cell lysis, without significant intracellular hemoglobin oxidation. These results show that the lytic process is not triggered by lipid peroxidation or hemichrome formation, and suggest that membrane protein modification is the relevant factor leading to red blood cell lysis.  相似文献   

15.
Copper is dangerous when it is present in excess, mainly because it can participate in the Fenton reaction, which produces radical species. As a consequence of copper pollution, people are involuntarily exposed to a copper overload under sub-clinical and sub-symptomatological conditions, which may be very difficult to detect. Thus, we investigated (i) the possible use of the chelator molecules carnosine and neocuproine to prevent the Cu overload-induced damage on cellular lipids and proteins, as tested in human cell culture systems, and (ii) the differential response of these two chelating agents in relation to their protective action, and the type of copper ion involved in the process, by using two types of human cultured cells (HepG2 and A-549). Cu treatment clearly enhanced (p < 0.01) the formation of protein carbonyls, thiobarbituric acid-reactive substances (TBARS) and the concentration of nitrate plus nitrites, with a concomitant decrease in cell survival, as estimated by the trypan dye exclusion test and lactate dehydrogenase leakage. Simultaneous treatment with Cu and carnosine or neocuproine indicated that carnosine is more efficient than neocuproine in protecting both types of cells from the effect of cupric ions on both the cell-associated damages and the decrease in the cellular viability. This observation was supported by the fact that carnosine is not only a complexing agent for Cu(II), but also an effective antioxidant that can dismutate superoxide radicals, scavenge hydroxyl radicals and neutralize TBARS formation. Carnosine should be investigated in more detail in order to establish its putative utility as an agent to prevent copper-associated damages in biological systems.  相似文献   

16.
氢气具有广泛的生物学功能,近年来逐渐引起广泛关注。但是氢气发挥生物学作用的机理一直都有争论,制约了氢生物学的进一步发展。现在被广泛接受的是氢气选择性与毒性自由基反应的理论,但是生理条件下氢气与自由基直接反应的证据并不充分,多数属于间接证据,无法区分氢气是与自由基直接反应还是影响了自由基的产生。氢气具有抗氧化作用,本团队研究表明,氢气不是在自由基产生之后去清除,而是减少自由基的产生,类似于在自由基产生之初就关上“开关”;氢气可以提高包括线粒体复合物Ⅰ、乙酰胆碱酯酶、HRP在内的生物酶的活性,可以影响线粒体膜电位和调节神经细胞膜电位,细胞膜的氧化还原酶类及离子通道等都受到氢气的调节,这表明氢气的作用可能是多靶点的主要基于酶学反应的过程,高等生物具有产生和利用氢气的氢化酶活性。主要探讨了氢气和自由基的关系以及氢气作用的生物酶学基础,以期为揭示氢气发挥生物学作用的机理提供参考。  相似文献   

17.
In U937 and mouse myeloma cells, protein hydroperoxides are the predominant hydroperoxide formed during exposure to AAPH or gamma irradiation. In lipid-rich human monocyte-derived macrophages (HMDMs), we have found the opposite situation. Hydroperoxide measurements by the FOX assay showed the majority of hydroperoxides formed during AAPH incubation were lipid hydroperoxides. Lipid hydroperoxide formation began after a four hour lag period and was closely correlated with loss of cell viability. The macrophage pterin 7,8-dihydroneopterin has previously been shown to be a potent scavenger of peroxyl radicals, preventing oxidative damage in U937 cells, protein and lipoprotein. However, when given to HMDM cells, 7,8-dihydroneopterin failed to inhibit the AAPH-mediated cellular damage. The lack of interaction between 7,8-dihydroneopterin and AAPH peroxyl radicals suggests that they localize to separate cellular sites in HMDM cells. Our data shows that lipid peroxidation is the predominant reaction occurring in HMDMs, possibly due to the high lipid content of the cells.  相似文献   

18.
In U937 and mouse myeloma cells, protein hydroperoxides are the predominant hydroperoxide formed during exposure to AAPH or gamma irradiation. In lipid-rich human monocyte-derived macrophages (HMDMs), we have found the opposite situation. Hydroperoxide measurements by the FOX assay showed the majority of hydroperoxides formed during AAPH incubation were lipid hydroperoxides. Lipid hydroperoxide formation began after a four hour lag period and was closely correlated with loss of cell viability. The macrophage pterin 7,8-dihydroneopterin has previously been shown to be a potent scavenger of peroxyl radicals, preventing oxidative damage in U937 cells, protein and lipoprotein. However, when given to HMDM cells, 7,8-dihydroneopterin failed to inhibit the AAPH-mediated cellular damage. The lack of interaction between 7,8-dihydroneopterin and AAPH peroxyl radicals suggests that they localize to separate cellular sites in HMDM cells. Our data shows that lipid peroxidation is the predominant reaction occurring in HMDMs, possibly due to the high lipid content of the cells.  相似文献   

19.
Tyrosyl free radicals generated by the peroxidase-catalyzed oxidation of peptide tyrosyl residues are known to yield the stable cross-linked product dityrosine. In the present report, horseradish peroxidase is used as a model of peroxidase to study oxidative modifications of non-protein cellular components. Tyrosyl free radicals promote, as many free radicals, the decay of β-phycoerythrin fluorescence emission, they oxidize NADH and ascorbic acid and initiate arachidonic acid peroxidation with formation of hydroperoxides and dienes. These results suggest that tyrosyl free radicals generated when tyrosine residues in protein and peptides are activated in vivo by peroxidase-H2O2 might undergo the peroxidation of membrane lipids.  相似文献   

20.
Cystatins are thiol proteinase inhibitors ubiquitously present in the mammalian body. In brain, they prevent unwanted proteolysis and are involved in several neurodegenerative diseases. Under physiological conditions nitric oxide can be found in almost all the tissues, but under pathological conditions NO has damaging effects. Its increased concentration, under various neural diseases leads to cell damage through formation of highly reactive peroxynitrite. Our present study was designed to investigate the protective effect of curcumin against NO induced damage of HM-GBC. NO caused intensive structural and functional damage of HM-GBC, resulting in 89% loss of its antiproteolytic activity after 2 h of incubation. Structural damage occurs in the form of protein degradation. Curcumin significantly protected HM-GBC against this damage. This suggests that curcumin has a significant potential in the treatment of diseases caused by nitrogen free radicals and this potential must be further explored for the development of novel drugs. This text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号