首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginine deiminase (ADI), an arginine degrading enzyme, has been studied as a potential anti-cancer agent for arginine-auxotrophic tumors, such as melanomas and hepatocellular carcinomas (HCCs). In this study, a strain SWP1 producing high activity of ADI was isolated from the Wuxi canal. Based on its morphological, biochemical characteristics and 16S rRNA gene sequence analysis, SWP1 was identified as Pseudomonas plecoglossicida and is now deposited at CGMCC (China General Microbiological Culture Collection Center) as P. plecoglossicida CGMCC2039. It is gram-negative, aerobe, rod-shaped, motile by one or several polar flagella. In vitro studies showed that HCC cell line HEPG2 was sensitive to ADI isolated from P. plecoglossicida CGMCC2039. Our study suggests that ADI from P. plecoglossicida CGMCC2039 could become a novel anti-tumor drug.  相似文献   

2.
The extracellular inulinase structural gene was isolated from the genomic DNA of the marine yeast Pichia guilliermondii strain 1 by PCR. The gene had an open reading frame of 1,542 bp long encoding an inulinase. The coding region of the gene was not interrupted by any intron. It encoded 514 amino acid residues of a protein with a putative signal peptide of 18 amino acids and the calculated molecular mass of 58.04 kDa. The protein sequence deduced from the inulinase structural gene contained the inulinase consensus sequences (WMNXPNGL) and (RDPKVF). It also had ten conserved putative N-glycosylation sites. The inulinase from P. guilliermondii strain 1 was found to be closely related to that from Kluyveromyces marxianus. The inulinase gene without the signal sequence was subcloned into pPICZαA expression vector and expressed in Pichia pastoris X-33. The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 60 kDa was found. Enzyme activity assay verified the recombinant protein as an inulinase. A maximum activity of 58.7 ± 0.12 U/ml was obtained from the culture supernatant of P. pastoris X-33 harboring the inulinase gene. A large amount of monosaccharides, disaccharides and oligosaccharides were detected after the hydrolysis of inulin with the crude recombinant inulinase.  相似文献   

3.
The gene encoding sucrose phosphorylase (742sp) in Leuconostoc mesenteroides NRRL B-742 was cloned and expressed in Escherichia coli. The nucleotide sequence of the transformed 742sp comprised an ORF of 1,458 bp giving a protein with calculated molecular mass of 55.3 kDa. 742SPase contains a C-terminal amino acid sequence that is significantly different from those of other Leu. mesenteroides SPases. The purified 742SPase had a specific activity of 1.8 U/mg with a K m of 3 mM with sucrose as a substrate; optimum activity was at 37°C and pH 6.7. The purified 742SPase transferred the glucosyl moiety of sucrose to cytosine monophosphate (CMP). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

6.
A 777-bp cDNA fragment encoding a mature alkaline lipase (LipI) from Penicillium cyclopium PG37 was amplified by RT–PCR, and inserted into the expression plasmid pPIC9 K. The recombinant plasmid, designated as pPIC9 K-lipI, was linearized with SalI and transformed into Pichia pastoris GS115 (his4, Mut+) by electroporation. MD plate and YPD plates containing G418 were used for screening of the multi-copy P. pastoris transformants (His+, Mut+). One transformant resistant to 4.0 mg/ml of G418, numbered as P. pastoris GSL4-7, expressing the highest recombinant LipI (rLipI) activity was chosen for optimizing expression conditions. The integration of the gene LipI into the P. pastoris GS115 genome was confirmed by PCR analysis using 5′- and 3′-AOX1 primers. SDS–PAGE and lipase activity assays demonstrated that the rLipI, a glycosylated protein with an apparent molecular weight of about 31.5 kDa, was extracellularly expressed in P. pastoris. When the P. pastoris GSL4-7 was cultured under the optimized conditions, the expressed rLipI activity was up to 407 U/ml, much higher than that (10.5 U/ml) expressed with standard protocol. The rLipI showed the highest activity at pH 10.5 and 25°C, and was stable at a broad pH range of 7.0–10.5 and at a temperature of 30°C or below.  相似文献   

7.
8.
Chitinases are digestive enzymes that break down glycosidic bonds in chitin. In the current study, an endochitinase gene Lbchi31 was cloned from Limonium bicolor. The cDNA sequence of Lbchi31 was 1,107 bp in length, encoding 322 amino acid residues with a calculated molecular mass of 31.7 kDa. Clustal analysis showed that there was a highly conserved chitin-binding domains in Lbchi31 protein, containing four sulfide bridges. The Lbchi31 gene was inserted into the pPIC9 vector and transferred into yeast Pichia pastoris GS115 and KM71 for heterologous expression. The transformant harboring the Lbchi31 gene showed a clearly visible protein band with a molecular mass of more than 31 kDa in the SDS-PAGE gel, indicating that it had been translated in P. pastoris. Enzyme characterization showed that the optimal reaction condition for chitinase LbCHI31 activity was: 40°C, pH of 5.0 and 5 mmol l−1 of Mn2+. The maximum enzyme activity was 0.88 U ml−1 following exposure to the cell wall chitin of Valsa sordida. The LbCHI31 enzyme can efficiently degrade cell wall chitin of the phytopathogenic Rhizoctonia solani, Fusarium oxysporum, Sclerotinia sclerotiorum, V. sordida, Septoria tritici and Phytophthora sojae, suggesting that it has the biocontrol function to fungal phytopathogen.  相似文献   

9.
The xylanase gene xyn II from Aspergillus usamii E001 was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPIC9K and integrated into the genome of a methylotrophic yeast, P. pastoris GS115, by electroporation. His+ transformants were screened for on the basis of their resistance to G418 and activity assay. A transformant, P. pastoris GSC12, which showed resistance to over 6 mg G418/ml and highest xylanase activity was selected. Recombinant xylanase was secreted by P. pastoris GSC12 24 h after methanol induction of shake-flask cultures, and reached a final yield of 3139. About 68 U/mg 120 h after the induction. The molecular mass of this xylanase was estimated to be 21 kDa by SDS-PAGE. The optimum pH and temperature were 4.2 and 50 °C, respectively. Xylanase was stable below 50 °C and within pH 3.0–7.0. Its activity was increased by EDTA and Co2+ ion and strongly inhibited by Mn2+, Li+ and Ag+ ions. The K m and V max values with birchwood xylan as the substrate were found to be 5.56 mg/ml and 216 μmol/mg/min, respectively. This is the first report on expression and characterization of xylanase from A. usamii in P. pastoris. The hydrolysis products consisted of xylooligosaccharides together with a small amount of xylose. This property made the enzyme attractive for industrial purposes, as relatively pure xylooligosaccharides could be obtained.  相似文献   

10.
The structural gene for sphingomyelinase (SMase) from Streptomyces griseocarneus, was introduced into Streptomyces lividans using a shuttle vector, pUC702, for Escherichia coli/S. lividans. High-level secretory production of SMase was achieved using the promoter, signal sequence and terminator regions of phospholipase D from Streptoverticillium cinnamoneum. The transformant constitutively expressed a high specific activity of SMase extracellularly during batch culture. Maximum SMase activity (555 ± 114 U/mg protein) was with 1.75 M MgCl2 which was about 50-fold more than that with 10 mM MgCl2.  相似文献   

11.
The activity of a dye-linked l-proline dehydrogenase (dye-l-proDH) was found in the crude extract of an aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis JCM 11548, and was purified 163-fold through four sequential chromatography steps. The enzyme has a molecular mass of about 108 kDa and is a homodimer with a subunit molecular mass of about 46 kDa. The enzyme retained more than 90% of its activity after incubation at 100 °C for 120 min (pH 7.5) or after incubation at pHs 4.5–9.0 for 30 min at 50 °C. The enzyme catalyzed l-proline dehydrogenation to Δ1-pyroline-5-carboxylate using 2,6-dichloroindophenol (DCIP) as the electron acceptor and the Michaelis constants for l-proline and DCIP were 1.67 and 0.026 mM, respectively. The prosthetic group on the enzyme was identified as flavin adenine dinucleotide by high-performance liquid chromatography. The subunit N-terminal amino acid sequence was MYDYVVVGAG. Using that sequence and previously reported genome information, the gene encoding the enzyme (Pcal_1655) was identified. The gene was then cloned and expressed in Escherichia coli and found to encode a polypeptide of 415 amino acids with a calculated molecular weight of 46,259. The dye-l-proDH gene cluster in P. calidifontis inherently differs from those in the other hyperthermophiles reported so far.  相似文献   

12.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

13.
Two extracellular chitinases were purified from Paecilomyces variotii DG-3, a chitinase producer and a nematode egg-parasitic fungus, to homogeneity by DEAE Sephadex A-50 and Sephadex G-100 chromatography. The purified enzymes were a monomer with an apparent molecular mass of 32 kDa (Chi32) and 46 kDa (Chi46), respectively, and showed chitinase activity bands with 0.01% glycol chitin as a substrate after SDS-PAGE. The first 20 and 15 N-terminal amino acid sequences of Chi32 and Chi46 were determined to be Asp-Pro-Typ-Gln-Thr-Asn-Val-Val-Tyr-Thr-Gly-Gln-Asp-Phe-Val-Ser-Pro-Asp-Leu-Phe and Asp-Ala-X-X-Tyr-Arg-Ser-Val-Ala-Tyr-Phe-Val-Asn-Trp-Ala, respectively. Optimal temperature and pH of the Chi32 and Chi46 were found to be both 60°C, and 2.5 and 3.0, respectively. Chi32 was almost inhibited by metal ions Ag+ and Hg2+ while Chi46 by Hg2+ and Pb2+ at a 10 mM concentration but both enzymes were enhanced by 1 mM concentration of Co2+. On analyzing the hydrolyzates of chitin oligomers [(GlcNAc) n , n = 2–6)], it was considered that Chi32 degraded chitin oligomers as an exo-type chitinase while Chi46 as an endo-type chitinase.  相似文献   

14.
A pyranose 2-oxidase gene from the brown-rot basidiomycete Gloeophyllum trabeum was isolated using homology-based degenerate PCR. The gene structure was determined and compared to that of several pyranose 2-oxidases cloned from white-rot fungi. The G. trabeum pyranose 2-oxidase gene consists of 16 coding exons with canonical promoter CAAT and TATA elements in the 5′UTR. The corresponding G. trabeum cDNA was cloned and contains an ORF of 1,962 base pairs encoding a 653 amino acid polypeptide with a predicted molecular weight of 72 kDa. A Hisx6 tagged recombinant G. trabeum pyranose 2-oxidase was generated and expressed heterologously in Escherichia coli yielding 15 U enzyme activity per ml of induced culture. Structural alignment and phylogenetic analysis were performed and are discussed.  相似文献   

15.
Cellobiohydrolase genes cbhI and cbhII were isolated from Trichoderma viride AS3.3711 and T. viride CICC 13038, respectively, using RT-PCR technique. The cbhI gene from T. viride AS3.3711 contains 1,542 nucleotides and encodes a 514-amino acid protein with a molecular weight of approximately 53.96 kDa. The cbhII gene from T. viride CICC 13038 was 1,413 bp in length encoding 471 amino acid residues with a molecular weight of approximately 49.55 kDa. The CBHI protein showed high homology with enzymes belonging to glycoside hydrolase family 7 and CBHII is a member of Glycoside hydrolase family 6. CBHI and CBHII play a role in the conversion of cellulose to glucose by cutting the disaccharide cellobiose from the non-reducing end of the cellulose polymer chain. The two cellobiohydrolase (CBHI, CBHII) genes were successfully expressed in Saccharomyces cerevisiae H158. Maximal activities of transformants Sc-cbhI and Sc-cbhII were 0.03 and 0.089 units ml−1 under galactose induction, respectively. The optimal temperatures of the recombinant enzymes (CBHI, CBHII) were 60 and 70°C, respectively. The optimal pHs of recombinant enzymes CBHI and CBHII were at pH 5.8 and 5.0, respectively.  相似文献   

16.
A superoxide dismutase (SOD) gene of Thermoascus aurantiacus var. levisporus, a thermophilic fungus, was cloned, sequenced, and expressed in Pichia pastoris and its gene product was characterized. The coding sequence predicted a 231 residues protein with a unique 35 amino acids extension at the N-terminus indicating a mitochondrial-targeting sequence. The content of Mn was 2.46 μg/mg of protein and Fe was not detected in the purified enzyme. The enzyme was found to be inhibited by NaN3, but not by KCN or H2O2. These results suggested that the SOD in Thermoascus aurantiacus var. levisporus was the manganese superoxide dismutase type. In comparison with other MnSODs, all manganese-binding sites were also conserved in the sequence (H88, H136, D222, H226). The molecular mass of a single band of the enzyme was estimated to be 21.7 kDa. The protein was expressed in tetramer form with molecular weight of 68.0 kDa. The activity of purified protein was 2,324 U/mg. The optimum temperature of the enzyme was 55°C and it exhibited maximal activity at pH 7.5. The enzyme was thermostable at 50 and 60°C and the half-life at 80°C was approximately 40 min.  相似文献   

17.
Luo H  Huang H  Yang P  Wang Y  Yuan T  Wu N  Yao B  Fan Y 《Current microbiology》2007,55(3):185-192
A novel phytase gene appA, with upstream and downstream sequences from Citrobacter amalonaticus CGMCC 1696, was cloned by degenerate polymerase chain reaction (PCR), and thermal asymmetric interlaced (TAIL) PCR and was overexpressed in Pichia pastoris. Sequence analysis revealed one open reading frame that consisted of 1311 bp encoding a 436–amino-acid protein, which had a deduced molecular mass of 46.3 kDa. The phytase appA belongs to the histidine acid phosphatase family and exhibits the highest identity (70.1%) with C. braakii phytase. The gene was overexpressed in P. pastoris. The secretion yield of recombinant appA protein was accumulated to approximately 4.2 mg·mL−1, and the enzyme activity level reached 15,000 U·mL−1, which is higher than any previous reports. r-appA was glycosylated, as shown by Endo H treatment. r-appA was purified and characterized. The specific activity of r-appA for sodium phytate was 3548 U·mg−1. The optimum pH and temperature for enzyme activity were 4.5 and 55°C, respectively. r-appA was highly resistant to pepsin or trypsin treatment. This enzyme could be an economic and efficient alternative to the phytases currently used in the feed industry.  相似文献   

18.
Liu Z  Li X  Chi Z  Wang L  Li J  Wang X 《Antonie van Leeuwenhoek》2008,94(2):245-255
The extracellular lipase structural gene was isolated from cDNA of Aureobasidium pullulans HN2-3 by using SMARTTM RACE cDNA amplification kit. The gene had an open reading frame of 1245 bp long encoding a lipase. The coding region of the gene was interrupted by only one intron (55 bp). It encodes 414 amino acid residues of a protein with a putative signal peptide of 26 amino acids. The protein sequence deduced from the extracellular lipase structural gene contained the lipase consensus sequence (G-X-S-X-G) and three conserved putative N-glycosylation sites. According to the phylogenetic tree of the lipases, the lipase from A. pullulans was closely related to that from Aspergillus fumigatus (XP_750543) and Neosartorya fischeri (XP_001257768) and the identities were 50% and 52%, respectively. The mature peptide encoding cDNA was subcloned into pET-24a (+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21(DE3). The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 47 kDa was found. Enzyme activity assay verified the recombinant protein as a lipase. A maximum activity of 0.96 U/mg was obtained from cellular extract of E. coli BL21(DE3) harboring pET-24a(+)LIP1. Optimal pH and temperature of the crude recombinant lipase were 8.0 and 35 °C, respectively and the crude recombinant lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

19.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an essential role in glycolysis by catalyzing the conversion of d-glyceraldehyde 3-phosphate (d-G3P) to 1,3-diphosphoglycerate using NAD+ as a cofactor. In this report, the GAPDH gene from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (GAPDH-tk) was cloned and the protein was purified to homogeneity. GAPDH-tk exists as a homotetramer with a native molecular mass of 145 kDa; the subunit molecular mass was 37 kDa. GAPDH-tk is a thermostable protein with a half-life of 5 h at 80–90°C. The apparent K m values for NAD+ and d-G3P were 77.8 ± 7.5 μM and 49.3 ± 3.0 μM, respectively, with V max values of 45.1 ± 0.8 U/mg and 59.6 ± 1.3 U/mg, respectively. Transmission electron microscopy (TEM) and image processing confirmed that GAPDH-tk has a tetrameric structure. Interestingly, GAPDH-tk migrates as high molecular mass forms (~232 kDa and ~669 kDa) in response to oxidative stress.  相似文献   

20.
Cytochrome c 6 , (cyt c 6) a soluble monoheme electron transport protein, was isolated and characterized from the chlorophyll d-containing cyanobacterium Acaryochoris marina, the type strain MBIC11017. The protein was purified using ammonium sulfate precipitation, ion exchange and gel filtration column chromatography, and fast performance liquid chromatography. Its molecular mass and pI have been determined to be 8.87 kDa and less than 4.2, respectively, by mass spectrometry and isoelectrofocusing (IEF). The protein has an alpha helical structure as indicated by CD (circular dichroism) spectroscopy and a reduction midpoint potential (E m) of +327 mV versus the normal hydrogen electrode (NHE) as determined by redox potentiometry. Its potential role in electron transfer processes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号