首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase.  相似文献   

5.
6.
7.
8.
Negative control of the galactose operon in E. coli   总被引:21,自引:0,他引:21  
Summary Non-inducible mutants have been isolated which synthesize the three galactose enzymes with the basal rate both in the absence and in the presence of inducers. These mutations are closely linked to the lysA gene, as are the constitutive mutations in the regulator gene first described by Buttin (1963).The non-inducible mutants are Gal on EMB gal plates. Revertants to the Gal + phenotpye are constitutive. Heterozygotes have been prepared at the locus of the regulator gene (galR), abd dominance studies involving the different alleles at this locus have been carried out. The non-inducible mutations are dominant over the wildtype, and this in turn is dominant over constitutive mutations in the galR gene.Starting from the non-inducible mutations, deletions have been isolated, which extend from the galR gene into the lysA gene. These are constitutive.The behavior of the non-inducible mutations and of the deletions are strong arguments for negative control of the galactose operon.  相似文献   

9.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.  相似文献   

10.
G Kuhnke  C Theres  H J Fritz    R Ehring 《The EMBO journal》1989,8(4):1247-1255
The Escherichia coli galactose operon contains an unusual array of closely spaced binding sites for proteins governing the expression from the two physically overlapping gal promoters. Based on studies of two gal promoter-up mutants we have previously suggested RNA-polymerase-induced DNA bending of gal promoter DNA. Here we present new evidence confirming and extending this interpretation. It was obtained by the circular permutation assay of gel electrophoretic mobility [Wu and Crothers (1984), Nature, 308, 509-513] applied to three analogous series of circularly permuted fragments derived from wild-type and two promoter-up mutant DNAs. The same circularly permuted DNA fragments have further been used to study the binding of gal repressor to its operator sites by electrophoretic mobility shift and by DNase I footprinting techniques. The main results are: (i) complexes carrying repressor either exclusively at the upstream operator O1 or at the downstream operator O2 exhibit different electrophoretic mobilities; (ii) binding to either one of the operators results in protein-induced DNA bending by the criteria of the circular permutation mobility assay; and (iii) occupation of both gal operators by gal repressor does not prevent cAMP-CRP-independent binding of RNA polymerase to the gal promoters, as judged by DNase I protection and gel retardation assays. The latter finding imposes constraints on any attempt to model the regulation of gal expression by assumed DNA-protein and protein-protein interactions.  相似文献   

11.
12.
13.
14.
15.
16.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.  相似文献   

17.
18.
The binding of the cyclic adenosine 3',5' monophosphate receptor protein (CRP or CAP) of Escherichia coli to non-specific DNA and to a specific lac recognition sequence has been investigated by circular dichroism (c.d.) spectroscopy. The effect of cAMP and cGMP on the co-operative non-specific binding was also studied. For the non-specific binding in the absence of cAMP a c.d. change (decrease of the intensity of the positive band with a shift of its maximum to longer wavelength) indicates that the DNA undergoes a conformational change upon CRP binding. This change might reflect the formation of the solenoidal coil previously observed by electron microscopy. The amplitude of the c.d. change increases linearly with the degree of saturation of the DNA and does not depend on the size of the clusters of CRP bound. From the variation of the c.d. effect as a function of the ionic strength, the product K omega (K, the intrinsic binding constant and omega, the co-operativity parameter) could be determined. The number of ion pairs involved in complex formation between CRP and DNA was found to be six to seven. Experiments performed with several DNAs, including the alternating polymers poly[d(A-T)] and poly[d(G-C)], demonstrated that the conformational change does not depend on the DNA sequence. However, in the presence of cAMP the c.d. spectrum of the DNA shows only a small variation upon binding CRP. In contrast, in the presence of cGMP the conformational change of the DNA is similar to that observed when non-liganded CRP binds. For the specific lac operon binding, the c.d. change is different from those observed for non-specific binding in the presence or absence of cAMP. These results emphasize the high variability of the DNA structure upon binding the same protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号