首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In eukaryotes, termination of mRNA translation is triggered by the essential polypeptide chain release factors eRF1, recognizing all three stop codons, and eRF3, a member of the GTPase superfamily with a role that has remained opaque. We have studied the kinetic and thermodynamic parameters of the interactions between eRF3 and GTP, GDP and the non-hydrolysable GTP analogue GDPNP in the presence (K(D)(GDP)=1.3+/-0.2 muM, K(D)(GTP) approximately 200 muM and K(D)(GDPNP)>160 muM) as well as absence (K(D)(GDP)=1.9+/-0.3 muM, K(D)(GTP) 0.7+/-0.2 muM and K(D)(GDPNP) approximately 200 muM) of eRF1. From the present data we propose that (i) free eRF3 has a strong preference to bind GDP compared to GTP (ii) eRF3 in complex with eRF1 has much stronger affinity to GTP than free eRF3 (iii) eRF3 in complex with PABP has weak affinity to GTP (iv) eRF3 in complex with eRF1 does not have strong affinity to GDPNP, implying that GDPNP is a poor analogue of GTP for eRF3 binding.  相似文献   

2.
In eukaryotes, eRF1 and eRF3 are associated in a complex that mediates translation termination. The regulation of the formation of this complex in vivo is far from being understood. In mammalian cells, depletion of eRF3a causes a reduction of eRF1 level by decreasing its stability. Here, we investigate the status of eRF3a when not associated with eRF1. We show that eRF3a forms altered in their eRF1-binding site have a decreased stability, which increases upon cell treatment with the proteasome inhibitor MG132. We also show that eRF3a forms altered in eRF1 binding as well as wild-type eRF3a are polyubiquitinated. These results indicate that eRF3a is degraded by the proteasome when not associated with eRF1 and suggest that proteasomal degradation of eRF3a controls translation termination complex formation by adjusting the eRF3a level to that of eRF1.  相似文献   

3.
Translation termination in eukaryotes is governed by two proteins belonging to class 1 (eRF1) and class 2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to yield GDP and Pi in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA, and peptidyl-tRNA and requires eRF1 for this activity. It is known that eRF1 and eRF3 interact with each other via their C-terminal regions both in vitro and in vivo. eRF1 consists of three domains—N, M, and C. In this study we examined the influence of the individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N, M, C, and NM domains induces the eRF3 GTPase activity in the presence of ribosomes. The MC domain does induce the eRF3 GTPase activity, but four times less efficiently than full-length eRF1. Therefore, we assumed that the MC domain (and very likely the M domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in the literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated that the eRF3 GTPase activity in the ribosome during translation termination is associated with the intermolecular interactions of GTP/GDP, the GTPase center of the large (60S) subunit, the MC domain of eRF1, and the C-terminal region and GTP-binding motifs of eRF3 but without participation of the N-terminal region of eRF1.  相似文献   

4.
We have earlier characterized Saccharomyces cerevisiae strains with mutations of essential SUP45 and SUP35, which code for translation termination factors eRF1 and eRF3, respectively. In this work, the sup45 and sup35 nonsense mutants were compared with respect to the levels of eight tRNAs: tRNATyr, tRNAGln, tRNATrp, tRNALeu, tRNAArg (described as potential suppressor tRNAs), tRNAPro, tRNAHis, and tRNAGly. The mutants did not display a selective increase in tRNAs, capable of a noncanonical read-through at stop codons. Most of the mutations increased the level of all tRNAs under study. The mechanisms providing for the viability of the sup45 and sup35 nonsense mutants are discussed.  相似文献   

5.
肽链释放因子(polypeptide release factor, RF)是参与细胞内蛋白质合成终止过程中新生肽链释放的一组重要的蛋白质,包括两类,即第一类肽链释放因子(classⅠrelease factor, RFⅠ)和第二类肽链释放因子(classⅡrelease factor, RFⅡ).关于第一类肽链释放因子识别终止密码子的机制和功能位点是目前分子细胞生物学领域的一个研究热点,第二类肽链释放因子作为一类GTP酶,在第一类肽链释放因子识别终止密码子和肽链释放过程中的协同作用也备受关注.近些年来,通过构建体内和体外的测活体系,对第一类肽链释放因子识别终止密码子的机制的研究取得了一些进展,提出了多种假说和模型,尤其是对第一类肽链释放因子的晶体结构及两类肽链释放因子复合体的空间结构的研究,为揭示真核生物细胞内蛋白质合成终止机制提供了直接的证据.  相似文献   

6.
编程性翻译移码是mRNA翻译为多肽链时核糖体沿mRNA正向或反向滑动1个碱基才能表达出1个完整多肽链的现象. 人的肽链释放因子eRF1对HIV-1病毒的编程性-1移码有直接的影响. 而且在频繁发生编程性+1移码的单细胞真核生物游仆虫中,肽链释放因子eRF1对编程性移码也有明显的影响. 为进一步研究eRF1中影响编程性翻译移码的关键序列及调控机理,本研究将含有不同终止密码子的移码序列和已报道的游仆虫移码基因Ndr2分别插入双荧光素酶报告基因中,成功建立了可在酵母中进行研究的编程性移码报告检测体系. 利用游仆虫肽链释放因子Eo-eRF1b的N结构域和酵母肽链释放因子Sc eRF1的MC结构域构建了杂合肽链释放因子(Eo/Sc eRF1),检测Eo-eRF1b N结构域中的不同突变位点对移码效率的影响. 结果表明,游仆虫肽链释放因子eRF1b中YCF区的突变能明显促进含终止密码UAA的移码序列的移码,推测这可能是由于eRF1突变体降低了对UAA的识别所导致. 此外,杂合肽链释放因子Eo/Sc eRF1能够有效地提高移码基因Ndr2的移码效率. eRF1b中YCF区的突变同样能明显促进 Ndr2的移码. 因此, 游仆虫肽链释放因子YCF区的特殊序列可能是这种生物中发生编程性移码频率较高的原因之一. 本研究为探讨纤毛虫编程性翻译移码调控机制提供了实验数据.  相似文献   

7.
蛋白质合成终止过程中肽链释放因子负责终止密码子的识别.真核生物第二类肽链释放因子(eRF3)是一类GTP酶,协助第一类肽链释放因子(eRF1)识别终止密码子和水解肽酰 tRNA酯键.之前的研究表明,两类肽链释放因子在细胞核中发挥功能,参与蛋白质合成和纺锤体的组装.本研究根据软件预测结果,构建了一系列八肋游仆虫eRF3的截短型突变体,分析在其N端是否存在引导eRF3的核定位信号.结果表明,在eRF3的N端有两个区域(NLS1:23-36 aa 和 NLS2: 236-272 aa)可以引导eRF3进入细胞核中,而且这两个区域具有典型的核定位信号的氨基酸序列特征. eRF3的核定位与其作为一种穿梭蛋白的功能相一致,即参与细胞有丝分裂纺锤体的形成和无义介导的mRNA降解途径.  相似文献   

8.
以八肋游仆虫第二类肽链释放因子eRF3基因为模板,用PCR的方法获得eRF3的C端(eRF3C)和C端缺失76个氨基酸的突变体eRF3Ct片段,并构建重组表达质粒pGEX-6p-1-eRF3C和pGEX-6p-1-eRF3Ct,转入大肠杆菌BL21(DE3)中获得了可溶性表达。通过Glutathione Sepharose 4B柱亲和层析纯化,重组蛋白GST-eRF3C和GST-eRF3Ct获得纯化。Western blotting分析表明获得的蛋白为目的蛋白。PreScission酶切割后得到eRF3C和eRF3Ct蛋白。体外pull down分析显示eRF3C和eRF3Ct均能与八肋游仆虫第一类释放因子eRF1a相互作用,这表明八肋游仆虫eRF3 C端的76个氨基酸对于释放因子eRF1a的结合不是必需的。  相似文献   

9.
Mazur  A. M.  Kholod  N. S.  Seit-Nebi  A.  Kisselev  L. L. 《Molecular Biology》2002,36(1):104-109
Termination of protein synthesis (hydrolysis of the last peptidyl-tRNA on the ribosome) takes place when the ribosomal A site is occupied simultaneously by one of the three stop codons and by a class-1 translation termination factor. The existing procedures to measure the functional activity of this factor both in vitro and in vivo have serious drawbacks, the main of which are artificial conditions for in vitro assays, far from those in the cell, and indirect evaluation of activity in in vivo systems. A simple reliable and sensitive system to measure the functional activity of class-1 translation termination factors could considerably expedite the study of the terminal steps of protein synthesis, at present remaining poorly known, especially in eukaryotes. We suggest a novel system to test the functional activity in vitro using native functionally active mRNA, rather than tri-, tetra-, or oligonucleotides as before. This mRNA is specially designed to contain one of the three terminating (stop) codons within the coding nucleotide sequence. Plasmids have been generated that carry the genes of suppressor tRNAs each of which is specific toward one of the three stop codons. They were shown to support normal synthesis of a reporter protein, luciferase, by reading through the stop codon within the coding mRNA sequence. We have demonstrated that human class-1 translation termination factor eRF1 is able to compete with suppressor tRNA for a stop codon and to completely prevent its suppressive effect at a sufficient concentration. Forms of eRF1 with point mutations in functionally essential regions have lower competitive ability, demonstrating the sensitivity of the method to the eRF1 structure. The enzymatic reaction catalyzed by the full-size reporter protein is accompanied by emission of light quanta. Therefore, competition between suppressor tRNA and eRF1 can be measured using a luminometer, and this allows precise kinetic measurements in a continuous automatic mode.  相似文献   

10.
11.
第二类肽链释放因子eRF3(eukaryotic polypeptide release factor)是一种GTPase,它促进第一类肽链释放因子eRFl的释放活性,并与细胞周期调控、细胞骨架组装、细胞凋亡和肿瘤形成等过程相关。哺乳动物细胞中eRF3有两种——eRF3a和eRF3b,分别由GSPTl和GSPT2(G1 to Sphase transition 1/2)基因编码。生存素(survivin)是迄今发现的最强有力的凋亡抑制因子,具有独特的结构和复杂的功能,不仅可以抑制细胞凋亡,还参与细胞有丝分裂、血管的生成等过程。eRF3和survivin都与细胞周期和细胞凋亡的调控相关。该实验室的前期研究表明,eRF3和survivin具有相互作用关系。该研究进一步对eRF3a进行截短突变。采用酵母双杂交和pull.down两种分析方法依次验证eRF3a(1.72aa)和eRF3a(1—36aa)与survivin的相互作用关系。结果表明,eRF3a(1.72aa)和eRF3a(1—36aa)均可以与survivin相互作用,由此确定eRF3a与survivinf相互作用的最小结构域位于其N末端1-36aa之间,从而为进一步证实eRF3a的N端结构域与survivin协同作用参与细胞周期和细胞凋亡的调控提供了数据支持。  相似文献   

12.
The high-resolution NMR structure of the N-domain of human eRF1, responsible for stop codon recognition, has been determined in solution. The overall fold of the protein is the same as that found in the crystal structure. However, the structures of several loops, including those participating in stop codon decoding, are different. Analysis of the NMR relaxation data reveals that most of the regions with the highest structural discrepancy between the solution and solid states undergo internal motions on the ps-ns and ms time scales. The NMR data show that the N-domain of human eRF1 exists in two conformational states. The distribution of the residues having the largest chemical shift differences between the two forms indicates that helices α2 and α3, with the NIKS loop between them, can switch their orientation relative to the β-core of the protein. Such structural plasticity may be essential for stop codon recognition by human eRF1.  相似文献   

13.
14.
Termination translation in Saccharomyces cerevisiae is controlled by two interacting polypeptide chain release factors, eRF1 and eRF3. Two regions in human eRF1, position at 281-305 and position at 411-415, were proposed to be involved on the interaction to eRF3. In this study we have constructed and characterized yeast eRF1 mutant at position 410 (correspond to 415 human eRF1) from tyrosine to serine residue resulting eRF1(Y410S). The mutations did not affect the viability and temperature sensitivity of the cell. The stop codons suppression of the mutant was analyzed in vivo using PGK-stop codon-LACZ gene fusion and showed that the suppression of the mutant was significantly increased in all of codon terminations. The suppression on UAG codon was the highest increased among the stop codons by comparing the suppression of the wild type respectively. In vitro interaction between eRF1 (mutant and wild type) to eRF3 were carried out using eRF1-(His)6 and eRF1(Y410S)-(His)6 expressed in Escherichia coli and indigenous Saccharomyces cerevisiae eRF3. The results showed that the binding affinity of eRF1(Y410S) to eRF3 was decreased up to 20% of the wild type binding affinity. Computer modeling analysis using Swiss-Prot and Amber version 9.0 programs revealed that the overall structure of eRF1(Y410S) has no significant different with the wild type. However, substitution of tyrosine to serine triggered the structural change on the other motif of C-terminal domain of eRF1. The data suggested that increasing stop codon suppression and decreasing of the binding affinity of eRF1(Y410S) were probably due to the slight modification on the structure of the C-terminal domain.  相似文献   

15.
The region of the nuclear GSPT2 gene coding for the N and M domains of translation termination factor eRF3b was tested in Rodentia for applicability as a new molecular marker. It cannot be used as a phylogenetic marker at the intrageneric level because of insufficient variability within families and the impossibility of resolving relationships in the family Cricetidae. However, this GSPT2 region allows reliable identification of higher taxa. The phylogenetic relationships among families revealed with the proposed molecular marker is generally in agreement with current concepts. The new marker indicates a close relationship between the genus Acomys and the family Gerbillidae, which is in agreement with other molecular data but contradicts morphological data. Thus, the region of the nuclear GSPT2 gene encoding the N and M domains of eRF3b can serve as an adequate phylogenetic marker in placental mammals at the level of families or higher taxa. It can also be used in solving controversial questions of phylogeny and taxonomy.  相似文献   

16.
The polypeptide release factor gene, eRF1, of Blepharisma japonicum (Bj-eRF1) was cloned and sequenced. Its coding region was 1314 base pairs and encodes a protein of 437 amino acids. The cloned gene was expressed in Escherichia coli and the recombinant Bj-eRF1 polypeptide was purified by Ni2+-nitrilotriacetic acid agarose and Superose12 chromatography. Pull-down analysis showed that the recombinant Bj-eRF1 interacts with the heterologously-expressed release factor, eRF3C, of Euplotes octocarinatus.  相似文献   

17.
18.
One of the rate-limiting steps in messenger RNA decay pathway is the 5'-cap cleavage of mRNAs, decapping reaction, which is conducted by the protein complex of Dcp1 and Dcp2. We find here that Dcp1p can interact with the release factor eRF3p (Sup35p) in Saccharomyces cerevisiae. Knockout of DCP1 caused not only the accumulation of nonsense mRNAs possibly due to the impaired decapping activity but also the enhancement of the read-through of nonsense codon. To examine the relationship between the two DCP1-knockout phenotypes, we produced DCP1 point mutants that lack the ability to support the translation termination. Interestingly, decapping activity of Dcp1p was still intact, but its interaction with eRF3p was abolished in the DCP1 mutants, indicating that the two functions originated from different entities of Dcp1p. These results suggest that the decapping enzyme Dcp1p may have an additional role in the translation termination through its interaction with eRF3p.  相似文献   

19.
The molecular-weight dependence of the rms radius of gyration of poly(γ-benzyl L -glutamate) (PBLG) in helicogenic solvents shows negative and positive deviations from expectations for an intact and rigid α-helix in the higher and lower molecular-weight ranges, respectively. In order to study the reason for both deviations, we compare the extant experimental data of with those computed for wormlike chain, freely jointed rod, and a rigid rod having random-coil portions at both ends. The computation for the freely jointed rod and the rigid rod having frayed ends is carried out by a simulation method of Muroga. From the Zimm and Bragg theory and the above comparisons, it is concluded that both deviations can be self-consistently explained if PBLG in helicogenic solvents has an essentially intact α-helical structure with some flexibility arising from random fluctuations in hydrogen bond length. This flexibility explains the negative deviations in the high molecular weight region. The positive deviations in the low molecular weight region result from the tendency of helices to unwind at the ends. © 1998 John Wiley & Sons, Inc. Biopoly 45: 281–288, 1998  相似文献   

20.
To evaluate the relationship between the sugar chain structure and biological activity, fibroblast-derived glycosylated human interferon-β, Chinese hamster ovary cell-derived glycosylated recombinant human interferon-β and Escherichia coli-derived unglycosylated recombinant human interferon-β were evaluated using human hepatoblastoma cells in vitro. Native fibroblast interferon-β expressed more cell-growth inhibitory action, 2′5′-oligoadenylate synthetase induction, and the inhibition of hepatitis B virus DNA replication than its asialoform and two recombinant interferon-βs. These results showed that the sugar chain structure of human interferon-β affects its biological activity on human hepatoblastoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号