共查询到20条相似文献,搜索用时 9 毫秒
1.
Release by Electrical Stimulation of Endogenous Glutamate, γ-Aminobutyric Acid, and Other Amino Acids from Slices of the Rat Medulla Oblongata 总被引:2,自引:2,他引:0
Evidence was obtained for the release of amino acids by electrical stimulation of slices of regions of the rat medulla oblongata: rostral ventrolateral, caudal ventrolateral and caudal dorsomedial. There was a Ca2+-dependent, tetrodotoxin-sensitive increase in the efflux of aspartate, glutamate, gamma-aminobutyric acid (GABA), glycine, and beta-alanine in all regions examined. There were distinct regional differences in the relative amounts of amino acids released. These results provide evidence for the possible neurotransmitter role of aspartate, glutamate, GABA, glycine, and beta-alanine in these regions of the rat medulla oblongata. 相似文献
2.
John C. Szerb 《Journal of neurochemistry》1982,39(3):850-858
Abstract: To see the effect of a γ-aminobutyric acid GABA uptake inhibitor on the efflux and content of endogenous and labeled GABA, rat cortical slices were first labeled with [3H]GABA and then superfused in the absence or presence of 1 mM nipecotic acid. Endogenous GABA released or remaining in the slices was measured with high performance liquid chromatography, which was also used to separate [3H]GABA from its metabolites. In the presence of 3 mM K+, nipecotic acid released both endogenous and [3H]GABA, with a specific activity four to five times as high as that present in the slices. The release of labeled metabolite(s) of [3H]GABA was also increased by nipecotic acid. The release of endogenous GABA evoked by 50 mM K+ was enhanced fourfold by nipecotic acid but that of [3H]GABA was only doubled when expressed as fractional release. In a medium containing no Ca2+ and 10 mM Mg2+, the release evoked by 50 mMK+ was nearly suppressed in either the absence or the presence of nipecotic acid. In the absence of nipecotic acid electrical stimulation (bursts of 64 Hz) was ineffective in evoking release of either endogenous or [3H]GABA, but in the presence of nipecotic acid it increased the efflux of endogenous GABA threefold, while having much less effect on that of [3H]GABA. Tetrodotoxin (TTX) abolished the effect of electrical stimulation. Both high K+ and electrical stimulation increased the amount of endogenous GABA remaining in the slices, and this increase was reduced by omission of Ca2+ or by TTX. The results suggest that uptake of GABA released through depolarization is of major importance in removing GABA from extracellular spaces, but the enhancement of spontaneous release by nipecotic acid may involve intracellular heteroexchange. Depolarization in the presence of Ca2+ leads to an increased synthesis of GABA, in excess of its release, but the role of this excess GABA remains to be established. 相似文献
3.
John C. Szerb 《Journal of neurochemistry》1988,50(1):219-224
It has been found previously that the ratio of aspartate to glutamate released and retained by brain slices reversibly changes with changing glucose concentrations in the medium. To find out whether increased neuronal activity also results in changes in the ratio of aspartate to glutamate, in this study electrical-field stimulation was applied for 10 min to hippocampal slices in the presence of 0.2-5 mM glucose. In 5 mM glucose, the ratio of aspartate to glutamate released did not change during stimulation, but the amount of aspartate retained at the end of stimulation was reduced. In contrast, in 1 mM or less glucose, the ratio of aspartate to glutamate released increased progressively and the rate of increase was inversely proportional to the glucose content of the medium. The evoked release of aspartate and glutamate both in low and high glucose was nearly suppressed in low (0.1 mM) Ca2+ or by tetrodotoxin. In low glucose, the ratio of aspartate to glutamate contained in the slices also increased as a result of stimulation. This increase was reduced only a little in low Ca2+, but was nearly eliminated by tetrodotoxin. Results suggest that increased neuronal activity causes a shift in the ratio of aspartate to glutamate released in the presence of glucose concentrations similar to those found in the brain in normoglycemic rats. This shift, due to an increased energy demand, probably originates from terminals which release aspartate and glutamate in different proportions. 相似文献
4.
Adenosine and Glutamate Modulate Each Other's Release from Rat Hippocampal Synaptosomes 总被引:4,自引:3,他引:1
Abstract: In rat hippocampal synaptosomes, adenosine decreased the K+ (15 mM) or the kainate (1 mM) evoked release of glutamate and aspartate. An even more pronounced effect was observed in the presence of the stable adenosine analogue, R-phenylisopropyladenosine. All these effects were reversed by the selective adenosine A1 receptor antagonist 8-cyclo-pentyltheophylline. In the same synaptosomal preparation, K+ (30 mM) strongly stimulated the release of the preloaded [3H]adenosine in a partially Ca2+-dependent and tetrodotoxin (TTX)-sensitive manner. Moreover, in the same experimental conditions, both l -glutamate and l -aspartate enhanced the release of [3H]adenosine derivatives ([3H]ADD). The gluta-mate-evoked release was dose dependent and appeared to be Ca2+ independent and tetrodotoxin insensitive. This effect was not due to metabolism because even the nonmetabolizable isomers d -glutamate and d -aspartate were able to stimulate [3H]ADD release. In contrast, the specific glutamate agonists N-methyl-d -aspartate, kainate, and quisqualate failed to stimulate [3H]ADD release, suggesting that glutamate and aspartate effects were not mediated by known excitatory amino acid receptors. Moreover, NMDA was also ineffective in the absence of Mg2+ and l -glutamate-evoked release was not inhibited by adding the specific antagonists 2-amino-5-phosphonovaleric acid or 6–7-dinitroquinoxaline-2, 3-dione. The stimulatory effect did not appear specific for only excitatory amino acids, as γ-anunobutyric acid stimulated [3H]ADD release in a dose-related manner. These results suggest that, at least in synaptosomal preparations from rat hippocampus, adenosine and glutamate modulate each other's release. The exact mechanism of such interplay, although still, unknown, could help in the understanding of excitatory amino acid neurotoxicity. 相似文献
5.
Glutamate Receptor Subtypes in Cultured Cerebellar Neurons: Modulation of Glutamate and γ-Aminobutyric Acid Release 总被引:2,自引:15,他引:2
Vittorio Gallo Rossana Suergiu Claudio Giovannini Giulio Levi 《Journal of neurochemistry》1987,49(6):1801-1809
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system. 相似文献
6.
The release of putative neurotransmitters [aspartate, glutamate, and gamma-aminobutyric acid (GABA)] was studied in hippocampal slices from adult normal C57BL/6J (B6) and El (epileptic) mice. The El mice, a genetic model of temporal lobe epilepsy, had an average of 86 seizures. Sets of B6 and El hippocampal slices (400 microns thick) were incubated in a series of normal and high potassium (60 mM) buffers in the presence or absence of calcium. The calcium-dependent and calcium-independent potassium-induced release of amino acids was compared in each mouse strain. Release of endogenous amino acids was measured using liquid chromatography with electrochemical detection and was expressed as picomoles of amino acid released per milliliter of incubation buffer per minute of incubation per slice +/- SEM. No significant differences were found between the El and B6 mice for the calcium-dependent potassium-evoked release of glutamate (18.20 +/- 2.62 and 15.41 +/- 3.56), or GABA (17.28 +/- 2.90 and 12.73 +/- 1.37), respectively. Aspartate release, however, was significantly higher in the El mice (6.62 +/- 0.69) than in the B6 mice (3.31 +/- 0.72). These findings suggest that enhanced aspartate release may be related to seizure expression in El mice. 相似文献
7.
Release of Glutamate, Aspartate, and γ-Aminobutyric Acid from Isolated Nerve Terminals 总被引:18,自引:18,他引:0
David G. Nicholls 《Journal of neurochemistry》1989,52(2):331-341
Abstract: With the advent of cloning, sequencing, and patchclamping techniques, knowledge of the postsynaptic actions of amino acid neurotransmitters has undergone a dramatic advance. The primary sequences of the inhibitory receptors for γ-aminobutyric acid (GABA) (Schofield et al., 1987) and glycine (Grenningloh et al., 1987) are now established, and patch-clamp analysis has elucidated many of the factors that regulate the opening of their ion channels. The excitatory glutamate receptors are being extensively characterized at both the pharmacological (reviewed by Foster and Fagg, 1984) and the electrophysiological (reviewed by Cull-Candy and Usowicz, 1987) level. In this climate, it is perhaps surprising that the fundamental presynaptic release mechanism for the amino acid neurotransmitters remains controversial. 相似文献
8.
The releases of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from 7-day-, 3-, 12-, and 18-month-old mice were investigated under cell-damaging conditions using a superfusion system. The slices were superfused under hypoxic conditions in the presence and absence of glucose and exposed to hydrogen peroxide. In the adult hippocampus under normal conditions the basal release of taurine was highest, with a response only about 2-fold to potassium stimulation (50 mM). The low basal releases of glutamate, aspartate, and GABA were markedly potentiated by K+ ions. In general, the release of the four amino acids was enhanced under all above cell-damaging conditions. In hypoxia and ischemia (i.e., hypoxia in the absence of glucose) the release of glutamate, aspartate and GABA increased relatively more than that of taurine, and membrane depolarization by K+ markedly potentiated the release processes. Taurine release was doubled in hypoxia and tripled in ischemia but K+ stimulation was abolished. In both the mature and immature hippocampus the release of glutamate and aspartate was greatly enhanced in the presence of H2O2, that of aspartate particularly in developing mice. In the immature hippocampus the increase in taurine release was 10-fold in hypoxia and 30-fold in ischemia, and potassium stimulation was partly preserved. The release processes of the four amino acids in ischemia were all partially Ca2+-dependent. High concentrations of excitatory amino acids released under cell-damaging conditions are neurotoxic and contribute to neuronal death during ischemia. The substantial amounts of the inhibitory amino acids GABA and taurine released simultaneously may constitute an important protective mechanism against excitatory amino acids in excess, counteracting their harmful effects. In the immature hippocampus in particular, the massive release of taurine under cell-damaging conditions may have a significant function in protecting neural cells and aiding in preserving their viability. 相似文献
9.
Abstract: Following incubation with [14 C]y-aminobutyric acid (GABA) or [3 H]dopamine, slices of rat striatum were superfused with media containing 36 mM K+ or ethylenediamine (EDA), 1 or 5 mM. Both K+ and EDA induced a release of [14 C]GABA, the K+ -induced release being largely Ca2+ -dependent, while the EDA-induced release was not. Whereas K+ also evoked a Ca2+ -dependent release of [3 H]dopamine, EDA evoked no release of dopamine. EDA may therefore have potential as a specific GABA releasing agent. 相似文献
10.
F. Moroni C. Bianchi† S. Tanganelli† G. Moneti L. Beani† 《Journal of neurochemistry》1981,36(5):1691-1697
Abstract: The release processes of endogenous Acetylcholine (ACh), γ-aminobutyric acid (GABA), glutamate (Glu) and glutamine (GLN) were studied in superfused guinea-pig caudatal slices. Basal ACh release remained constant for up to 2 h, while the basal release of GABA, Glu and GLN declined to half or less of its initial values after 1 h of superfusion. Electrical stimulation increased the ACh release by 700–800% and that of GABA by 80% whereas it decreased the output of Glu by 50% and failed to modify the GLN efflux. KCl (25 mM) increased the output of ACh by 400%, that of GABA by approximately 500% and decreased that of Glu by 40%. Substituting of CaCl2 by MgCl2 in the superfusion medium reduced the basal ACh release by 70% whereas no differences were observed in the basal efflux of GABA, Glu and GLN. Under these conditions, no evoked release of ACh or of GABA was detected, following electrical or KCl stimulation. Tetrodotoxin 5 × 10-7 M decreased the basal ACh release by 60% and increased the GABA efflux by 40%. The toxin abolished the stimulus-evoked ACh efflux but scarcely affected that of GABA. These results are consistent with a possible neurotransmitter role of ACh and GABA in the striatum and show some differences in the ionic mechanisms underlying GABA and ACh release. 相似文献
11.
gamma-Aminobutyric acid (GABA) synthesis was studied in rat brain synaptosomes by measuring the increase of GABA level in the presence of the GABA-transaminase inhibitor gabaculine. The basal rate of synaptosomal GABA synthesis in glucose-containing medium (25.9 nmol/h/mg of protein) was only 3% of the maximal activity of glutamate decarboxylase (GAD; 804 +/- 83 nmol/h/mg of protein), a result indicating that synaptosomal GAD operates at only a small fraction of its catalytic capacity. Synaptosomal GABA synthesis was stimulated more than threefold by adding 500 microM glutamine. Glutamate also stimulated GABA synthesis, but the effect was smaller (1.5-fold). These results indicate that synaptosomal GAD is not saturated by endogenous levels of its substrate, glutamate, and account for part of the unused catalytic capacity. The greater stimulation of GABA synthesis by glutamine indicates that the GAD-containing compartment is more accessible to extrasynaptosomal glutamine than glutamate. The strong stimulation by glutamine also shows that the rates of uptake of glutamine and its conversion to glutamate can be sufficiently rapid to support GABA synthesis in nerve terminals. Synaptosomes carried out a slow net synthesis of aspartate in glucose-containing medium (7.7 nmol/h/mg of protein). Aspartate synthesis was strongly stimulated by glutamate and glutamine, but in this case the stimulation by glutamate was greater. Thus, the larger part of synaptosomal aspartate synthesis occurs in a different compartment than does GABA synthesis. 相似文献
12.
The turnover rate of gamma-aminobutyric acid (GABA) in the rat striatum was estimated by measuring its accumulation after inhibition of GABA-transaminase (GABA-T) with gabaculine. Intrastriatal injections of 100 micrograms gabaculine induced a rapid and complete inhibition of GABA-T. GABA accumulation was linear with time for at least 60 min (estimated turnover rate = 25 nmol/mg protein/h). The accumulation of GABA after gabaculine administration in animals that had been treated with kainic acid (5 nmol intrastriatally, 7 days) was only 40% of the control value, indicating that a major fraction of the net increase in GABA content induced by gabaculine originates in kainic acid-sensitive neurons. Intrastriatal injection of a mixture of kainic acid (5 nmol) and gabaculine caused a net increase in striatal GABA content significantly greater than that observed in controls, suggesting that neuronal death induced by kainic acid is preceded by a period of increased neuronal activity. Glutamic acid, the putative neurotransmitter for the excitatory corticostriatal pathway, also produced a significant increase in striatal GABA accumulation when injected together with gabaculine. This effect was blocked by the administration of the glutamate receptor antagonist glutamic acid diethyl ester. The interactions between GABAergic neurons and other neurotransmitters present in the striatum were also analyzed. 相似文献
13.
Abstract: The effect of antibodies to GM1 ganglioside on release of neurotransmitters from rat brain slices was studied. Depolarization-induced (40 mM-KCl or veratrine) release of γ-aminobutyric acid was markedly enhanced. Depolarization-induced release of norepinephrine was only slightly enhanced, whereas that of serotonin was unaffected. No effect on spontaneous release was observed for any of these three neurotransmitters. These results show that antibodies that can bind to synaptic membrane antigens may alter neurotransmitter release and that antibodies directed against GM1 ganglioside exhibit a measure of specificity in producing such an effect. 相似文献
14.
γ-Hydroxybutyrate Stimulation of the Formation of Cyclic GMP and Inositol Phosphates in Rat Hippocampal Slices 总被引:2,自引:1,他引:1
The presence of gamma-hydroxybutyrate (GHB) (300-600 microM) in the incubation medium of rat hippocampal slices led to an increase of intracellular cyclic GMP and inositol phosphates. This phenomenon is dependent on the time and the dose of GHB used and might be the result of the stimulation of GHB receptor sites which are abundant in rat hippocampus. The increase of cyclic GMP and inositol phosphates is blocked by some anticonvulsants and opiate antagonists. These results seems to indicate that, like many substances inducing epileptic phenomena, GHB provokes neuronal depolarization in hippocampus which is accompanied by formation of cyclic GMP and inositol phosphates. The effect of opiate antagonists can be explained by the possible implication of an opiate synapse which mediates GHB effects in rat hippocampus. 相似文献
15.
Exposure to high hydrostatic pressure produces neurological changes referred to as the high-pressure nervous syndrome (HPNS). Manifestations of HPNS include tremor, EEG changes, and convulsions. These symptoms suggest an alteration in synaptic transmission, particularly with inhibitory neural pathways. Because spinal cord transmission has been implicated in HPNS, this study investigated inhibitory neurotransmitter function in the cord at high pressure. Guinea pig spinal cord synaptosome preparations were used to study the effect of compression to 67.7 atmospheres absolute on [3H]glycine and [3H]gamma-aminobutyric acid ([3H]GABA) release. Pressure was found to exert a significant suppressive effect on the depolarization-induced calcium-dependent release of glycine and GABA by these spinal cord presynaptic nerve terminals. This study suggests that decreased tonic inhibitory regulation at the level of the spinal cord contributes to the hyperexcitability observed in animals with compression to high pressure. 相似文献
16.
G. Selema R. M. Cristòfol S. Gassó R. Griffiths E. Rodríguez-Farré 《Journal of neurochemistry》1997,68(4):1534-1541
Abstract: The l - and d -enantiomers of the sulphur-containing amino acids (SAAs)—homocysteate, homocysteine sulphinate, cysteate, cysteine sulphinate, and S-sulphocysteine—stimulated [3H]noradrenaline release from rat hippocampal slices in a concentration-dependent manner. The relative potencies of the l -isomers (EC50 values of 1.05–1.96 mM) were of similar order to that of glutamate (1.56 mM), which was 10-fold lower than that of NMDA (0.15 mM), whereas the d -isomers exhibited a wider range of potencies (0.75 to >5 mM). All stimulatory effects of the SAAs were significantly inhibited by the voltage-sensitive Na+ channel blocker tetrodotoxin (55–71%) and completely blocked by addition of Mg2+ or Co2+ to the incubation medium. All SAA-evoked responses were concentration-dependently antagonized by the selective NMDA receptor antagonist d -(?)-2-amino-5-phosphonopentanoic acid (IC50 values of 3.2–49.5 µM). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, at 100 µM inhibited the [3H]noradrenaline release induced by glutamate and NMDA (65 and 76%, respectively) and by all SAAs studied (65–85%), whereas 10 µM CNQX only inhibited the effects of S-sulpho-l -cysteine and l - and d -homocysteate (33, 32, and 44%, respectively). However, the more selective AMPA/kainic acid receptor antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (100 µM), which did not antagonize the [3H]noradrenaline release induced by glutamate and NMDA, reduced only the S-sulpho-l -cysteine-evoked response (25%). Thus, the stimulation of Ca2+-dependent[3H]noradrenaline release from hippocampal slices elicited by the majority of the SAAs appears to be mediated by the NMDA receptor. 相似文献
17.
γ-Aminobutyric Acid Stimulates the Release of Endogenous Ascorbic Acid from Rat Striatal Tissue 总被引:2,自引:2,他引:0
Abstract: γ-Aminobutyric acid (GABA) was found to induce the release of ascorbic acid from rat striatal homogenates and minces. This release was studied with the use of a rapid supervision system with an on-line amperometric detector that monitors for the presence of easily oxidized substances (i.e., ascorbate, 3,4-dihydroxyphenylethylamine). The release was found to be calcium-independent and depolarization-dependent. This releasable pool of ascorbate could be replenished through nonstereospecific uptake. The releasing action of GABA was mimicked by the GABA agonist, muscimol, and was completely inhibited by the GABA antagonist, picrotoxin. The structural analogues of GABA, β-alanine and γ-hydroxybutyric acid, had no effect. These data indicate that ascorbate release is GABA-receptor mediated and syn-aptically localized. 相似文献
18.
Neuronal growth cones isolated in bulk from neonatal rat forebrain have uptake and K(+)-stimulated release mechanisms for gamma-aminobutyric acid (GABA). Up to and including postnatal day 5, the K(+)-stimulated release of [3H]GABA and endogenous GABA is Ca2+ independent. At these ages, isolated growth cones neither contain synaptic vesicles nor stain for synaptic vesicle antigens. Here we examined the possibility that the release mechanism underlying Ca2(+)-independent GABA release from isolated growth cones is by reversal of the plasma membrane GABA transporter. The effects of two GABA transporter inhibitors, nipecotic acid and an analogue of nipecotic acid, SKF 89976-A, on K(+)-stimulated release of [3H]GABA from superfused growth cones were examined. Nipecotic acid both stimulated basal [3H]GABA release and enhanced K(+)-stimulated release of [3H]GABA, which indicates that this agent can stimulate GABA release and is, therefore, not a useful inhibitor with which to test the role of the GABA transporter in K(+)-stimulated GABA release from growth cones. In contrast, SKF 89976-A profoundly depressed both basal and K(+)-stimulated [3H]GABA release. This occurred at similar concentrations at which uptake was blocked. These observations provide evidence for a major role of the GABA transporter in GABA release from neuronal growth cones. 相似文献
19.
P. Di Iorio G. Battaglia R. Ciccarelli P. Ballerini P. Giuliani A. Poli F. Nicoletti F. Caciagli 《Journal of neurochemistry》1996,67(1):302-309
Abstract: Electrical stimulation of rat hippocampal slices evoked the release of excitatory amino acids and purines, as reflected by a time-dependent increase in the extracellular levels of glutamate and adenosine, as well as by the increased efflux of radioactivity in slices preloaded with both [14C]glutamate and [3H]adenosine. The evoked release of excitatory amino acids and purines was amplified when slices were exposed to 8-cyclopentyl-1,3-dipropylxanthine (a selective A1 adenosine receptor antagonist), (+)-α-methyl-4-carboxyphenylglycine [a mixed antagonist of metabotropic glutamate receptors (mGluRs)], or (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (a selective antagonist of class II mGluRs). In contrast, 2-chloro-N6-cyclopentyladenosine (CCPA; a selective A1 receptor agonist) or (2S,1R,2R,3R)-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; a selective agonist of class II mGluRs) reduced the evoked release of excitatory amino acids and purines. CCPA and DCG-IV also reduced the increase in cyclic AMP formation induced by either forskolin or electrical stimulation in hippocampal slices. The inhibitory effect of CCPA and DCG-IV on release or cyclic AMP formation was less than additive. We conclude that the evoked release of excitatory amino acids and purines is under an inhibitory control by A1 receptors and class II mGluRs, i.e., mGluR2 or 3, which appear to operate through a common transduction pathway. In addition, although these receptors are activated by endogenous adenosine and glutamate, they can still respond to pharmacological agonists. This provides a rationale for the use of A1 or class II mGluR agonists as neuroprotective agents in experimental models of excitotoxic neuronal degeneration. 相似文献
20.
Abstract: The bidirectional movement of GABA (γ-aminobutyric acid) was studied in slices of rat spinal cord which were incubated in small volumes of medium. The appearance in the medium of endogenous GABA and the disappearance from the medium of [14C]GABA were used to calculate the rates of unidirectional uptake and unidirectional release of GABA. Under these conditions, no net uptake of GABA was observed when slices were incubated in media containing concentrations of GABA as high as 25 μm . Elevated potassium (60 mm ) stimulated the unidirectional release of endogenous GABA from spinal cord slices by a calcium-dependent process. Ouabain (0.1 mm ) more than doubled the unidirectional release of endogenous GABA in a calcium-independent manner, while unidirectional uptake was inhibited by 44%. Nipecotic acid (1.0 mm ) stimulated unidirectional release and inhibited unidirectional uptake of GABA. 相似文献