首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbate and tocopherol are important antioxidants that protect cells against oxidative stress. The interaction of ascorbate and alpha-tocopherol in cells is difficult to detect as both ascorbate and alpha-tocopherol are unstable in vitro in a biological medium. We examined the interactions between human dermal fibroblasts, ascorbate and alpha-tocopherol to determine the effects of the vitamins on growth and cell viability. The interaction of ascorbate and alpha-tocopherol was studied in a fibroblast culture medium during 48h. Ascorbate and alpha-tocopherol were detected by fluorimetry after high-performance liquid chromatography (HPLC). Cell growth and cell viability were studied by cell numeration after trypan blue staining. The ascorbate concentration fell in presence of alpha-tocopherol in cell culture medium under all experimental conditions, with or without cells. Ascorbate partly protected alpha-tocopherol but only in presence of cells. Cell viability was preserved by alpha-tocopherol whereas ascorbate enhanced fibroblast growth. The synergy between ascorbate and alpha-tocopherol corresponds to a consumption of ascorbate which spares alpha-tocopherol but only in presence of cells.  相似文献   

2.
Hydroperoxide metabolism in cyanobacteria   总被引:9,自引:0,他引:9  
The enzymes involved in antioxidative activity and the cellular content of the antioxidants glutathione and ascorbate in the cyanobacteria Nostoc muscorum 7119 and Synechococcus 6311 have been examined for their roles in hydroperoxide removal. High activities of ascorbate peroxidase and catalase were found in vegetative cells of both species and in the heterocysts of N. muscorum. The affinity of ascorbate peroxidase for H2O2 was 15- to 25-fold higher than that of catalase. Increased activity of ascorbate peroxidase was observed in N. muscorum when H2O2 production was enhanced by photorespiration. Catalase activity was decreased in dilute cultures whereas ascorbate peroxidase activity increased. Ascorbate peroxidase activity also increased when the CO2 concentration was reduced. Ascorbate peroxidase appears to be a key enzyme in a cascade of reactions regenerating antioxidants. Dehydroascorbate reductase was found to regenerate ascorbate, and glutathione reductase recycled glutathione. In vegetative cells glutathione was present in high amounts (2-4 mM) whereas the ascorbate content was almost 100-fold lower (20-100 microM). Glutathione peroxidase was not detected in either cyanobacterium. It is concluded from the high activity of ascorbate peroxidase activity and the levels of antioxidants found that this enzyme can effectively remove low concentrations of peroxides. Catalase may remove H2O2 produced under photooxidative conditions where the peroxide concentration is higher.  相似文献   

3.
The control of ascorbic acid synthesis and turnover in pea seedlings   总被引:10,自引:0,他引:10  
The rate of ascorbate synthesis and turnover in pea seedling embryonic axes was investigated in relation to its pool size. Ascorbate accumulated in embryonic axes of germinating pea seeds which has been supplied with ascorbate. Incorporation of [U-14C]glucose into ascorbate after a 2 h labelling period was reduced by ascorbate loading for 3 h and 20 h, providing evidence that ascorbate biosynthesis is inhibited by endogenous ascorbate. Ascorbate turnover was estimated by following the metabolism of [1-14C]ascorbate over 2 h after ascorbate loading and by the rate of decrease of the ascorbate pool size after ascorbate loading. Ascorbate turnover rate, determined by [1-14C]ascorbate metabolism, increased as a linear function of pool size. The absolute turnover rate was higher in ascorbate-loaded embryonic axes but was always about 13% of the pool per hour. The initial rate of ascorbate turnover, estimated from the net decrease in pool size after ascorbate loading, also showed a similar turnover rate to that estimated from [1-14C]ascorbate metabolism. Ascorbate loading had no effect on ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase or glutathione reductase activity. Ascorbate oxidase activity decreased after ascorbate loading.  相似文献   

4.
Light GG  Mahan JR  Roxas VP  Allen RD 《Planta》2005,222(2):346-354
Transgenic cotton (Gossypium hirsutum L.) lines expressing the tobacco glutathione S-transferase (GST) Nt107 were evaluated for tolerance to chilling, salinity, and herbicides, antioxidant enzyme activity, antioxidant compound levels, and lipid peroxidation. Although transgenic seedlings exhibited ten-fold and five-fold higher GST activity under normal and salt-stress conditions, respectively, germinating seedlings did not show improved tolerance to salinity, chilling conditions, or herbicides. Glutathione peroxidase (GPX) activity in transgenic seedlings was 30% to 60% higher under normal conditions, but was not different than GPX activity in wild-type seedlings under salt-stress conditions. Glutathione reductase, superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase activities were not increased in transgenic seedlings under salt-stress conditions, while dehydroascorbate reductase activity was decreased in transgenic seedlings under salt-stress conditions. Transgenic seedlings had 50% more oxidized glutathione when exposed to salt stress. Ascorbate levels were not increased in transgenic seedlings under salt-stress conditions. Malondialdehyde content in transgenic seedlings was nearly double that of wild-type seedlings under normal conditions and did not increase under salt-stress conditions. These results show that expression of Nt107 in cotton does not provide adequate protection against oxidative stress and suggests that the endogenous antioxidant system in cotton may be disrupted by the expression of the tobacco GST.  相似文献   

5.
6.
The present study examines the salinity-induced oxidative damage and differential response of enzymatic and non-enzymatic antioxidants of Nostoc muscorum. As compared to carotenoid content which showed induction the chlorophyll and phycocyanin contents were inhibited after salt stress. Acceleration of lipid peroxidation and peroxide production suggested onset of oxidative damage. The activities of all studied enzymatic antioxidants were significantly increased by salt stress with maximum induction of superoxide dismutase (154.8% at 200 mM NaCl treatment). Interestingly under severe stress condition (250 mM NaCl) ascorbate peroxidase seems to be more crucial than catalase for peroxide scavenging. Among the studied non-enzymatic antioxidants alpha-tocopherol was induced maximally (56.0%), however, ascorbate and reduced glutathione were increased by only 8.9% after 250 mM NaCl treatment as compared to control cells. Therefore, salinity was found to induce antioxidative defense system of N. muscorum.  相似文献   

7.
Changes in ascorbate and glutathione contents and the activities and isoenzyme patterns of enzymes of the ascorbate-glutathione cycle were investigated in embryo axes and cotyledons of germinating lupine (Lupinus luteus L.) seeds. Ascorbate content was not significantly affected over the initial 12 h of imbibition in embryo axes, but afterwards increased, with the most rapid accumulation coinciding with radicle emergence. A somewhat similar trend was observed for glutathione with significant increase in embryo axes shortly before radicle protrusion followed by decline in the next hours. In cotyledons the ascorbate pool rose gradually during germination but the amount of glutathione showed fluctuations during a whole germination period. The activity of ascorbate peroxidase (APX) rose progressively in embryo axes, while activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) showed transient increase during germination. New isoforms of APX and GR were synthesized, suggesting that they play a relevant role during germination. All analyzed enzymes were already present in dry seeds which allowed them to be active immediately after imbibition.  相似文献   

8.
Myrothamnus flabellifolia, a short woody shrub from southern Africa, can survive severe desiccation of its vegetative organs. We studied mechanisms protecting this plant from oxidative damage during desiccation for 2 weeks, 4 and 8 months, and also during subsequent rehydration. This plant retains high concentrations of chlorophyll during desiccation, and these chlorophyll molecules are probably a source for potentially harmful singlet oxygen production. Desiccation triggered substantial increases in zeaxanthin and redox shifts of the antioxidants glutathione and ascorbate towards their oxidised forms. Simultaneously, the concentrations of violaxanthin, beta-carotene, ascorbate, alpha-tocopherol, and glutathione reductase activity progressively decreased. Antheraxanthin, gamma-tocopherol, lutein, neoxanthin and glucose-6-phosphate dehydrogenase displayed less pronounced changes in response to desiccation. Even after 4 months of desiccation, Myrothamnus flabellifolia recovered rapidly upon rehydration. Re-watering induced formation of ascorbate and glutathione, simultaneous reduction of their oxidised forms, and rapid production of alpha-tocopherol and of various carotenoids. Only after 8 months of desiccation did the antioxidant system of M. flabellifolia break down; 3 weeks after the onset of rehydration, these plants abscised their leaves, but even then they were still able to recover and develop new ones. Ascorbate, beta-carotene and alpha-tocopherol were totally depleted after 8 months of desiccation and did not recover upon rehydration; glutathione was partly maintained, but only in the oxidised form. We present a model demonstrating which parts of antioxidant pathways break down as oxidative stress becomes detrimental and we discuss some potential implications of our results for the genetic modification of crop plants to improve their drought tolerance.  相似文献   

9.
Dark addition of hydrogen peroxide to intact spinach chloroplastsresulted in the inactivation of ascorbate peroxidase accompaniedby a decrease in ascorbate contents. This was also the casein reconstituted chloroplasts containing ascorbate, NADP+, NAD+and ferredoxin. The addition of hydrogen peroxide during light,however, showed little effect on ascorbate contents and ascorbateperoxidase activity in either the intact or reconstituted chloroplasts.In contrast to ascorbate peroxidase, the enzymes participatingin the regeneration of ascorbate in chloroplasts (monodehydroascorbatereductase, dehydroascorbate reductase and glutathione reductase)were not affected by the dark addition of hydrogen peroxide.Ascorbate contents increased again by illumination of the chloroplastsafter the dark addition of hydrogen peroxide. These resultsshow that the inactivation of the hydrogen peroxide scavengingsystem on dark addition of hydrogen peroxide [Anderson et al.(1983) Biochim. Biophys. Acta 724: 69, Asada and Badger (1984)Plant & Cell Physiol. 25: 1169] is caused by the loss ofascorbate peroxidase activity. Ascorbate peroxidase activitywas rapidly lost in ascorbate-depleted medium, and protectedby its electron donors, ascorbate, isoascorbate, guaiacol andpyrogallol, but not by GSH, NAD(P)H and ferredoxin. (Received June 14, 1984; Accepted August 15, 1984)  相似文献   

10.
In order to characterise the sensitivity of antioxidative systems to temperature-induced oxidative stress, two species (Coleus blumei and Fagus sylvatica, L.) representative of environments with contrasting temperature characteristics have been exposed to low or high temperatures of 10 or 35 °C, respectively. Beech leaves were harvested in light and darkness. Coleus leaves were separated into green and white leaf tissue. The thermal dependencies of the activities of protective enzymes and chlorophyll fluorescence over a temperature range from 10 to 35 °C were determined. Ascorbate peroxidase activities were activated at low temperatures in vitro and, thereby, may provide an instantaneous protection against H2O2 accumulation which is faster than de novo synthesis. Monodehydroascorbate radical reductase was apparently not involved in short-term acclimation to low or high temperature. After short-term acclimation to low temperature, glutathione reductase and glutathione were more diminished in Coleus than in beech. Both species contained higher concentrations of ascorbate and glutathione at high temperatures than at low temperatures whereas glutathione reductase activity increased. Ascorbate peroxidase activity from Coleus leaves, though detectable under standard assay conditions (25 °C), failed at 35 °C in vitro. The results suggest that the higher temperature susceptibility of Coleus than that of beech was associated with a differential loss in glutathione reductase/glutathione at low temperature and an inhibition of ascorbate peroxidase at high temperature. Since the thermal dependencies of antioxidative enzymes were significantly affected by the preceding environmental conditions, the relative enzymatic activities determined under standard assay conditions may not be representative of enzymatic activities in foliage exposed to varying environmental temperatures.  相似文献   

11.
A comprehensive antioxidative mechanism was found in the freshwater dinoflagellate Peridinium gatunense Lemm. during the spring bloom in Lake Kinneret. Ascorbate was present throughout the bloom period and was responsible, together with catalase, for the elimination of photosynthetically produced H2O2. As glutathione concentrations and ascorbate regenerative enzymes were negligible during mid-spring, ascorbate was presumably biosynthesized during the photosynthetically active period. Antioxidative activity increased overall at the end of the spring in conjunction with elevated ambient stress conditions, for example high light. Under such circumstances, ascorbate was regenerated. Ascorbate levels doubled when cells were exposed to an increase in irradiance from 60 to 600 μmol photons·m?2·s?1, and on addition of H2O2, concentrations increased a further 20-fold. Significant antioxidative activity was also noted in the dark, although this was dependent on the presence of H2O2. Diurnal changes in antioxidants and their regenerative enzymes were observed. The activities of mono-dehydroascorbate reductase, glutathione reductase, and ascorbate concentrations showed ultraradian periodicity and were completely in phase throughout the day/night period. Dehydroascorbate reductase activity and glutathione concentrations were also in phase but showed aperiodic variation, as did ascorbate peroxidase activity. Superoxide dismutase and catalase activities were generally out of phase during the 24-h period but did show ultraradian periodicity. Lake samples entrained under constant light revealed an inate 12-h rhythm for catalase activity, during at least 36 h.  相似文献   

12.
Ascorbate specific peroxidase in chloroplasts was purified fromspinach leaves. Spinach chloroplast peroxidase was a monomerwith a molecular weight of about 30,000 and showed an absorptionspectrum similar to a hemoprotein. The enzyme lost its activitywithin a minute in the absence of ascorbate under aerobic conditions.In addition to ascorbate, 20% sorbitol was necessary to stabilizethe enzyme. The inactivation of the enzyme in the ascorbate-depletedmedium was protected by other electron donors, pyrogallol, guaiacoland pyrocatechol, whose oxidation rates were very low comparedwith that of ascorbate. The inactivated enzyme recovered itsactivity with monodehydroascorbate radicals generated by theascorbate-ascorbate oxidase system. A mechanism of inactivationand reactivation of ascorbate peroxidase is proposed. (Received August 28, 1986; Accepted November 13, 1986)  相似文献   

13.
Tolerance to salinity stress in higher plants correlates to levels of antioxidant enzymes and/or substrates. Do hyperosmotic and hypoosmotic stress induce antioxidant responses in salt tolerant algae, and if so, are these responses the same for both excess and minimal salinity? To answer these questions, cultures of the marine alga Dunaliella tertiolecta (Chlorophyta) were grown in seven salinities covering a 60-fold range from 0.05 to 3.0 mol/L NaCl. Long-term effects of salinity on growth and antioxidant parameters were determined. Growth rates were reduced at the salinity extremes (0.05 mol/L NaCl and 3 mol/L NaCl) indicating the cultures were stressed. The levels of six antioxidant enzymes and three antioxidant substrates were quantified at these growth salinities. Compared to growth at optimum salinities (i.e. 0.2-0.5 mol/L NaCl), high salinities produced a 260% increase in monodehydroascorbate reductase, a doubling of ascorbate peroxidase activity and a three-fold increase in the rate of dark respiration. Cells acclimated to low growth salinities (hyposaline stress, i.e. < 0.2 mol/L NaCl) showed major increases in glutathione and alpha-tocopherol coupled with decreases in Fv/Fm ratios and in total and reduced ascorbate compared to moderate and high external salinities. Cell volumes remained unchanged, except at the lowest salinity where they doubled. Catalase, superoxide dismutase, dehydroascorbate reductase and glutathione reductase activities were not altered by extreme salinities. The involvement of oxidative stress at both salinity extremes is implied by the alterations in antioxidant enzymes and substrates, but the specific changes are very different between hypo and hypersaline stresses.  相似文献   

14.
Ozone-induced inactivation of antioxidant enzymes   总被引:2,自引:0,他引:2  
Lee YK  Mok Kim S  Han S 《Biochimie》2003,85(10):947-952
Ozone is an air pollutant that damages a variety of biomolecules. We investigated ozone-induced inactivation of three major antioxidant enzymes. Cu/Zn superoxide dismutase was inactivated by ozone in a concentration-dependent manner. The concentration of ozone for 50% inactivation was approximately 45 microM when 10 microM Cu/Zn superoxide dismutase was incubated for 30 min in the presence of ozone. SDS-polyacrylamide gel electrophoresis (PAGE) showed that the enzyme was randomly fragmented. Both ascorbate and glutathione were very effective in protecting Cu/Zn superoxide dismutase from ozone-induced inactivation. The other two enzymes, catalase and glutathione peroxidase, were much more resistant to ozone than Cu/Zn superoxide dismutase. The ozone concentrations for 50% inactivation of 10 microM catalase and glutathione peroxidase were 500 and 240 microM, respectively. SDS-PAGE demonstrated that ozone caused formation of high molecular weight aggregates in catalase and dimerization in glutathione peroxidase. Glutathione protected catalase and glutathione peroxidase from ozone but the effective concentrations were much higher than that for Cu/Zn superoxide dismutase. Ascorbate was almost ineffective. The result suggests that, among the three antioxidant enzymes, Cu/Zn superoxide dismutase is a major target for ozone-induced inactivation and both glutathione and ascorbate are very effective in protecting the enzyme from ozone.  相似文献   

15.
Ascorbate peroxidase is a hydrogen peroxide-scavenging enzyme that is specific to plants and algae and is indispensable to protect chloroplasts and other cell constituents from damage by hydrogen peroxide and hydroxyl radicals produced from it. In this review, first, the participation of ascorbate peroxidase in the scavenging of hydrogen peroxide in chloroplasts is briefly described. Subsequently, the phylogenic distribution of ascorbate peroxidase in relation to other hydrogen peroxide-scavenging peroxidases using glutathione, NADH and cytochrome c is summarized. Chloroplastic and cytosolic isozymes of ascorbate peroxidase have been found, and show some differences in enzymatic properties. The basic properties of ascorbate peroxidases, however, are very different from those of the guaiacol peroxidases so far isolated from plant tissues. Amino acid sequence and other molecular properties indicate that ascorbate peroxidase resembles cytochrome c peroxidase from fungi rather than guaiacol peroxidase from plants, and it is proposed that the plant and yeast hydrogen peroxide-scavenging peroxidases have the same ancestor.  相似文献   

16.
Root plastids of the cultivated tomato Lycopersicon esculentum (Lem) exhibited salt-induced oxidative stress as indicated by the increased H 2 O 2 and lipid peroxidation levels which were accompanied with increased contents of the oxidized forms of ascorbate and glutathione. In contrast, H 2 O 2 level decreased, lipid peroxidation level slightly decreased and the levels of the reduced forms of ascorbate and glutathione increased in plastids of L. pennellii (Lpa) species in response to salinity. This better protection of Lpa root plastids from salt-induced oxidative stress was correlated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (POD), monodehydroascorbate reductase (MDHAR), glutathione peroxidase (GPX), glutathione- S -transferase (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPX). In the plastids of both species, activities of SOD, APX, and POD could be resolved into several isozymes. In Lem plastids two Cu/ZnSOD isozymes were found whereas in Lpa an additional FeSOD type could also be detected. In response to salinity, activities of selected SOD, APX, and POD isozymes were increased in Lpa, while in Lem plastids the activities of most of SOD and POD isozymes decreased. Taken together, it is suggested that plastids play an important role in the adaptation of Lpa roots to salinity.  相似文献   

17.
Protoplasts isolated from Nicotiana tabacum (L.) leaves were cultured for 6 days in liquid medium and some features of their antioxidant capacity were investigated. Ascorbate exported into the culture medium was oxidized non-enzymically, whereas important modifications of the enzymic scavenging activity were detected inside protoplasts. A new pool of isoenzymes, most of them with cytoplasmic characteristics, ensures the increased ascorbate peroxidase activity. The specific activity of other enzymes involved in the ascorbate/glutathione cycle, such as dehydroascorbate reductase and glutathione reductase, and of glutathione peroxidase were modified, resulting in cultured protoplasts with quantitative differences in antioxidant capacity compared to leaves. The hypothesis presented here suggests that the new scavenging system is related to differences in the compartment-specific accumulation of active oxygen species following protoplast isolation. Received: 8 December 1997 / Revision received: 27 March 1998 / Accepted: 10 April 1998  相似文献   

18.
In this study the influence of chronic free-air ozone exposure and of different meteorological conditions in the very dry year 2003 and the more humid year 2004 on the antioxidative system in sun and shade leaves of adult FAGUS SYLVATICA trees were investigated. Contents of ascorbate, glutathione, and alpha-tocopherol, as well as chloroplast pigments were determined under ambient (1 x O(3)) and double ambient (2 x O(3)) ozone concentrations. Ozone affected the antioxidative system in June and July, causing lower ascorbate contents in the apoplastic space, a more oxidized redox state of ascorbate and glutathione and an increase in pigment contents predominantly in the shade crown. For all measured parameters significant differences between the years were observed. In 2004 the redox state of ascorbate and glutathione was in a more reduced state and leaf contents of alpha-tocopherol, pigments of the xanthophyll cycle, beta-carotene, lutein, neoxanthin, and alpha-carotene were lower compared to 2003. Contents of total glutathione and chlorophyll a + b were increased in the second year. These results indicate a strong influence of the drought conditions in 2003 on the antioxidative system of beech overruling the ozone effects. Shade leaves showed lower contents of ascorbate in both years and the redox states of ascorbate and glutathione were more oxidized compared to sun leaves. Contents of photoprotective and accessory pigments generally were enhanced and the de-epoxidation state of the xanthophyll cycle was lower in the shade compared to the sun crown. Exhibiting less antioxidants shade leaves seem to be more sensitive against ozone than sun leaves.  相似文献   

19.
An ascorbate-deficient semi-dwarf mutant asfL-1 was detected in 250 Gy γ-ray treated grass pea (Lathyrus sativus L.) cv. BioR-231. The mutant contained only 42 % of leaf and 20 % of root ascorbate content of mother control (MC). I investigated the possible causes of ascorbate deficiency and its effect on growth and antioxidant defense in control and 150 mM NaCl-treated seedling after 60 d growth period. Ascorbate deficiency was due to significant reduction in activities of monodehydroascorbate reductase and dehydroascorbate reductase as well as increase in ascorbate oxidase, leading to considerable decrease in redox state. Despite low ascorbate pool and decrease in ascorbate peroxidase activity, shoot and root biomass production in asfL-1 mutant were similar to MC plants, even at NaCl treatment. High accumulation of glutathione (GSH) coupled with high activities of GSH reductase, catalase, GSH peroxidase and peroxidase in both tissues of the mutant permitted efficient recycling of GSH and scavenging of H2O2 through well integrated catalase/peroxidase system, despite high superoxide dismutase activity under NaCl treatment. The collapse of this system led to inhibition of growth in NaCl-treated mother plants. Together, the results suggested that asfL-1 plants undertook a major reshuffle in its antioxidant defense machinery, which effectively counterbalanced the negative impact of ascorbate deficiency and remained unperturbed by NaCl treatment to maintain normal growth and biomass production.  相似文献   

20.
Oxidative stress responses were tested in the unicellular cyanobacterium Synechococcus PCC 7942 (R2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. Activities of ascorbate peroxidase and catalase were correlated with the extent and time-course of oxidative stresses. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresses. Catalase activity was inhibited in cells treated with high H2O2 concentrations, and was not induced under photo-oxidative stress. Regeneration of ascorbate in peroxide-treated cells was found to involve mainly monodehydroascorbate reductase and to a lesser extent dehydroascorbate reductase. The induction of the antioxidative enzymes was dependent on light and was inhibited by chloramphenicol. Peroxide treatment was found to induce the synthesis of eight proteins, four of which were also induced by heat shock.Abbreviations ASC ascorbate - DHA dehydroascorbate - MDA monodehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - ASC Per ascorbate peroxidase - DHA red. dehydroascorbate reductase - MDA red. monodehydroascorbate reductase - GSSG red. glutathione reductase - HSP heat shock proteins - PSP peroxide shock proteins - Cm chloramphenicol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号