首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellobiose dehydrogenase (CDH) participates in the degradation of cellulose and lignin. The protein is an extracellular flavocytochrome with a b-type cytochrome domain (CYT(cdh)) connected to a flavodehydrogenase domain (DH(cdh)). DH(cdh) catalyses a two-electron oxidation at the anomeric C1 position of cellobiose to yield cellobiono-1,5-lactone, and the electrons are subsequently transferred from DH(cdh) to an acceptor, either directly or via CYT(cdh). Here, we describe the crystal structure of Phanerochaete chrysosporium DH(cdh) determined at 1.5 A resolution. DH(cdh) belongs to the GMC family of oxidoreductases, which includes glucose oxidase (GOX) and cholesterol oxidase (COX); however, the sequence identity with members of the family is low. The overall fold of DH(cdh) is p-hydroxybenzoate hydroxylase-like and is similar to, but also different from, that of GOX and COX. It is partitioned into an FAD-binding subdomain of alpha/beta type and a substrate-binding subdomain consisting of a seven-stranded beta sheet and six helices. Docking of CYT(cdh) and DH(cdh) suggests that CYT(cdh) covers the active-site entrance in DH(cdh), and that the resulting distance between the cofactors is within acceptable limits for inter-domain electron transfer. Based on docking of the substrate, cellobiose, in the active site of DH(cdh), we propose that the enzyme discriminates against glucose by favouring interaction with the non-reducing end of cellobiose.  相似文献   

2.
The flavin-dependent pyranose 2-oxidase catalyzes the oxidation of d-glucose and other pyranoses at the C2 atom to yield 2-keto-sugars and hydrogen peroxide. Here, the steady-state kinetic mechanism of the enzyme from Trametes ochracea was investigated as a function of pH. Our findings show that the enzyme follows a bi-bi ping-pong kinetic mechanism at pH values <7.0, and a bi-bi ordered mechanism at pH values >7.0. Thus, at low pH the reactivity of the reduced enzyme with oxygen is controlled a by a conformational change of the enzyme that is associated with the release of the 2-keto-sugar from the active site of the enzyme. In contrast, at high pH the reduced enzyme-product complex permits the reaction of oxygen with the flavin. The study also illustrates that caution should be exerted in extrapolating the conclusions drawn on steady-state kinetic mechanisms established at a single pH value to other pH’s in flavoprotein oxidases.  相似文献   

3.
D -Tagatose is a sweetener with low caloric and non-glycemic characteristics. It can be produced by an enzymatic oxidation of D -galactose specifically at C2 followed by chemical hydrogenation. Pyranose 2-oxidase (P2Ox) from Trametes multicolor catalyzes the oxidation of many aldopyranoses to their corresponding 2-keto derivatives. Since D -galactose is not the preferred substrate of P2Ox, semi-rational design was employed to improve the catalytic efficiency with this poor substrate. Saturation mutagenesis was applied on all positions in the active site of the enzyme, resulting in a library of mutants, which were screened for improved activity in a 96-well microtiter plate format. Mutants with higher activity than wild-type P2Ox were chosen for further kinetic investigations. Variant V546C was found to show a 2.5-fold increase of kcat with both D -glucose and D -galactose when oxygen was used as electron acceptor. Because of weak substrate binding, however, kcat/KM is lower for both sugar substrates compared to wild-type TmP2Ox. Furthermore, variants at position T169, i.e., T169S and T169N, showed an improvement of the catalytic characteristics of P2Ox with D -galactose. Batch conversion experiments of D -galactose to 2-keto-D -galactose were performed with wild-type TmP2O as well as with variants T169S, T169N, V546C and V546C/T169N to corroborate the kinetic properties determined by Michaelis-Menten kinetics.  相似文献   

4.
cDNA-encoding pyranose 2-oxidase (P2O) from Trametes pubescens was sequenced and cloned into Escherichia coli strain BL21/DE3 on a multicopy plasmid under the control of trc promoter. The synthesis of P2O was studied in a batch culture in M9-based mineral medium: the enzyme was synthesized constitutively at 28 °C in amount corresponding to 8% of the cell soluble protein (0.6 U mg−1). Only small portion of P2O (11%) was in the form of non-active inclusion bodies. Purified recombinant enzyme has similar physico-chemical and kinetic parameters with other P2Os. When compared to the expression of p2o of Trametes ochracea, a ratio of the mature enzyme to inclusion bodies found in the same E. coli host at 28 °C is as much as nine times higher. The finding makes the enzyme from T. pubescens preferable for the large-scale production by recombinant bacteria. The difference in amino acid sequences of the P2O from T. ochracea and T. pubescens may explain the favourable trait of the latter enzyme regarding protein folding.  相似文献   

5.
Pyranose 2-oxidase catalyzes the oxidation of a number of carbohydrates using dioxygen. The enzyme forms a D(2) symmetric homotetramer and contains one covalently bound FAD per subunit. The structure of the enzyme from Peniophora sp. was determined by multiwavelength anomalous diffraction (MAD) based on 96 selenium sites per crystallographic asymmetric unit and subsequently refined to good-quality indices. According to its chain fold, the enzyme belongs to the large glutathione reductase family and, in a more narrow sense, to the glucose-methanol-choline oxidoreductase (GMC) family. The tetramer contains a spacious central cavity from which the substrate enters one of the four active centers by penetrating a mobile barrier. Since this cavity can only be accessed by glucose-sized molecules, the enzyme does not convert sugars that are part of a larger molecule. The geometry of the active center and a comparison with an inhibitor complex of the homologous enzyme cellobiose dehydrogenase allow the modeling of the reaction at a high confidence level.  相似文献   

6.
We present the first report on characterization of the covalent flavinylation site in flavoprotein pyranose 2-oxidase. Pyranose 2-oxidase from the basidiomycete fungus Trametes multicolor, catalyzing C-2/C-3 oxidation of several monosaccharides, shows typical absorption maxima of flavoproteins at 456, 345, and 275 nm. No release of flavin was observed after protein denaturation, indicating covalent attachment of the cofactor. The flavopeptide fragment resulting from tryptic/chymotryptic digestion of the purified enzyme was isolated by anion-exchange and reversed-phase high-performance liquid chromatography. The flavin type, attachment site, and mode of its linkage were determined by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy of the intact flavopeptide, without its prior enzymatic degradation to the central aminoacyl moiety. Mass spectrometry identified the attached flavin as flavin adenine dinucleotide (FAD). Post-source decay analysis revealed that the flavin is covalently bound to histidine residue in the peptide STHW, consistent with the results of N-terminal amino acid sequencing by Edman degradation. The type of the aminoacyl flavin covalent link was determined by NMR spectroscopy, resulting in the structure 8alpha-(N(3)-histidyl)-FAD.  相似文献   

7.
Pyranose 2‐oxidase (P2O) from Trametes multicolor contains FAD as cofactor, and forms a tetramer. The protein structure of a mutated P2O, T169S (Thr169 is replaced by Ser), in solution was studied by means of molecular dynamics simulation and analyses of photoinduced electron transfer (ET) from Trp168 to excited isoalloxazine (Iso*), and was compared with wild type (WT) P2O. Hydrogen bonding between Iso and nearby amino acids was very similar as between T169S and WT protein. Distances between Iso and Tyr456 were extremely heterogeneous among the subunits, 1.7 (1.5 in WT) in subunit A (Sub A), 0.97 (2.2 in WT) in Sub B, 1.3 (2.1 in WT) in Sub C, 1.3 nm (2.0 in WT) in Sub D. Mean values of root of mean square fluctuation over all residues were greater by four times than those in WT. This suggests that the protein structure of T169S is much more flexible than that of WT. Electrostatic (ES) energies between Iso anion in one subunit and ionic groups in the entire protein were evaluated. It was found that more than 50% of the total ES energy in each subunit is contributed from other subunits. Reported fluorescence decays were analyzed by a method as WT, previously reported. Electron affinities of Iso* in T169S were appreciably higher than those in WT. Static dielectric constants near Iso and Trp168 were also quite higher in T169S than those in WT.  相似文献   

8.
5‐Keto‐D ‐fructose is a useful starting material for the synthesis of pyrrolidine iminosugars. It can be prepared by regioselective oxidation of L ‐sorbose using pyranose 2‐oxidase (P2Ox) and O2 as a cosubstrate. As the solubility of O2 in aqueous solution is low and the affinity of P2Ox for O2 is poor, we developed a new and efficient process for the production of 5‐keto‐D ‐fructose based on engineered P2Ox from Peniophora gigantea and in situ generation of O2 from H2O2 with catalase. This kind of oxygen supply required efficient mixing of the bioreactor which was achieved by controlled feeding of H2O2 close to the impeller tip where energy dissipation rate is highest. Thus bubbling, known to affect enzyme stability, was largely avoided, and the process could be run up to 145% oxygen super‐saturation which speeds‐up P2Ox activity. Under these conditions quantitative oxidation of 180 g L?1 L ‐sorbose to 5‐keto‐D ‐fructose could be achieved within 4 h, resulting in a threefold higher overall productivity of the process compared to a process using gaseous oxygen supply. In addition, in situ generation of O2 from H2O2 lowered the oxygen demand of the process by a factor of 100 compared to gaseous oxygen supply. Biotechnol. Bioeng. 2012; 109: 2941–2945. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
Pyridoxine 4-oxidase (PNOX) from Mesorhizobium loti is a monomeric glucose–methanol–choline (GMC) oxidoreductase family enzyme, catalyzes FAD-dependent oxidation of pyridoxine (PN) into pyridoxal, and is the first enzyme in pathway I for the degradation of PN. The tertiary structures of PNOX with a C-terminal His6-tag and PNOX–pyridoxamine (PM) complex were determined at 2.2 Å and at 2.1 Å resolutions, respectively. The overall structure consisted of FAD-binding and substrate-binding domains. In the active site, His460, His462, and Pro504 were located on the re-face of the isoalloxazine ring of FAD. PM binds to the active site through several hydrogen bonds. The side chains of His462 and His460 are located at 2.7 and 3.1 Å from the N4′ atom of PM. The activities of His460Ala and His462Ala mutant PNOXs were very low, and 460Ala/His462Ala double mutant PNOX exhibited no activity. His462 may act as a general base for the abstraction of a proton from the 4′-hydroxyl of PN. His460 may play a role in the binding and positioning of PN. The C4′ atom in PM is located at 3.2 Å, and the hydride ion from the C4′ atom may be transferred to the N5 atom of the isoalloxazine ring. The comparison of active site residues in GMC oxidoreductase shows that Pro504 in PNOX corresponds to Asn or His of the conserved His–Asn or His–His pair in other GMC oxidoreductases. The function of the novel proline residue was discussed.  相似文献   

11.
We report here the first three-dimensional structure of a mammalian thioltransferase as determined by single crystal X-ray crystallography at 2.2 A resolution. The protein is known for its thiol-redox properties and dehydroascorbate reductase activity. Recombinant pig liver thioltransferase expressed in Escherichia coli was crystallized in its oxidized form by vapor diffusion technique. The structure was determined by multiple isomorphous replacement method using four heavy-atom derivatives. The protein folds into an alpha/beta structure with a four-stranded mixed beta-sheet in the core, flanked on either side by helices. The fold is similar to that found in other thiol-redox proteins, viz. E. coli thioredoxin and bacteriophage T4 glutaredoxin, and thus seems to be conserved in these functionally related proteins. The active site disulfide (Cys 22-Cys 25) is located on a protrusion on the molecular surface. Cys 22, which is known to have an abnormally low pKa of 3.8, is accessible from the exterior of the molecule. Pro 70, which is in close proximity to the disulfide bridge, assumes a conserved cis-peptide configuration. Mutational data available on the protein are in agreement with the three-dimensional structure.  相似文献   

12.
Glucose 2-oxidase (EC 1.1.3.10) from Coriolus versicolor and Phanerochaete chrysosporium and glucose 1-oxidase (EC 1.1.3.4) from Aspergillus niger bound to a CU(II)-IDA column in the pH range of 6–8. However, glucose 1-oxidase from Penicillium amagasakiense bound only partially to a CU(II)-IDA column at pH 8.0. Metal chelates containing either Ni(II) or Zn(II) were useful in the adsorption of glucose 2-oxidase from Phanerochaete chrysosporium. The binding of glucose 2-oxidase from P. chrysosporium to Ni(II) and Zn(II)-IDA agarose columns increases as a function of pH of the buffer system. The adsorption of glucose oxidases on metal(II)-IDA chelates was due to the available histidine residues on enzyme molecules since the addition of imidazole in the buffer system abolished the binding of glucose oxidases to these columns. Both glucose oxidases from C.versicolor, P. chrysosporium and A. niger were purified in one step by immobilized metal affinity chromatography on metal(II)-IDA agarose columns with a recovery of enzyme activity in the range of 80–91%. Purified preparations of glucose oxidases from fungal strains were apparently homogeneous on native PAGE and SDS-PAGE. Immobilized metal affinity chromatography was used to separate glucose 1-oxidase from the 2-oxidase on metal(II)-IDA agarose columns which was confirmed by analysis of the reaction products by HPLC. The different chromatographic behaviour of glucose oxidases on metal(II)-IDA chelates is apparently due to the number and spatial distribution of available histidine residues on these enzyme molecules. Received 12 May 1998/ Accepted in revised form 29 July 1998  相似文献   

13.
The decapentaplegic(Dpp), a member of the TGF-β superfamily, plays a pivotal role in the control of proliferation, global patterning and induction of specific cell fates during Drosophila development. Mother against Dpp(Mad) is the founding member of the conserved Smad protein family which specifically transduces the intracellular TGF-β signaling cascade. Here we report the 2.80 Å structure of the MH2 domain of Mad(Mad-MH2) that was readily superposed to the mammal Smad-MH2 structures. This unphosphorylated Mad-MH2 forms a symmetric homotrimer in crystals, consistent with the result of the size-exclusion chromatography that Mad-MH2 exhibited a propensity for concentration-dependent oligomerization prior to phosphorylation. Structural analysis revealed that the formation of homotrimeric Mad-MH2 is mainly mediated by contacts involving the extreme C-terminal SSVS motif, and is strengthened by phosphorylation of the last two Ser residues which was confirmed by the gel filtration analysis of the pseudophosphorylated Mad-MH2(DVD). Intriguingly, the homotrimer within an asymmetric unit only possesses two ordered C-terminal tails, reminiscent of the arrangement of the R-Smad/Smad4 complexes, indicating that the subunit with a flexible SSXS motif would be readily replaced by Co-Smad to form a functional heterotrimer.  相似文献   

14.
Bacillus subtilis yumC encodes a novel type of ferredoxin‐NADP+ oxidoreductase (FNR) with a primary sequence and oligomeric conformation distinct from those of previously known FNRs. In this study, the crystal structure of B. subtilis FNR (BsFNR) complexed with NADP+ has been determined. BsFNR features two distinct binding domains for FAD and NADPH in accordance with its structural similarity to Escherichia coli NADPH‐thioredoxin reductase (TdR) and TdR‐like protein from Thermus thermophilus HB8 (PDB code: 2ZBW). The deduced mode of NADP+ binding to the BsFNR molecule is nonproductive in that the nicotinamide and isoalloxazine rings are over 15 Å apart. A unique C‐terminal extension, not found in E. coli TdR but in TdR‐like protein from T. thermophilus HB8, covers the re‐face of the isoalloxazine moiety of FAD. In particular, Tyr50 in the FAD‐binding region and His324 in the C‐terminal extension stack on the si‐ and re‐faces of the isoalloxazine ring of FAD, respectively. Aromatic residues corresponding to Tyr50 and His324 are also found in the plastid‐type FNR superfamily of enzymes, and the residue corresponding to His324 has been reported to be responsible for nucleotide specificity. In contrast to the plastid‐type FNRs, replacement of His324 with Phe or Ser had little effect on the specificity or reactivity of BsFNR with NAD(P)H, whereas replacement of Arg190, which interacts with the 2′‐phosphate of NADP+, drastically decreased its affinity toward NADPH. This implies that BsFNR adopts the same nucleotide binding mode as the TdR enzyme family and that aromatic residue on the re‐face of FAD is hardly relevant to the nucleotide selectivity.  相似文献   

15.
16.
TRPV channels are important polymodal integrators of noxious stimuli mediating thermosensation and nociception. An ankyrin repeat domain (ARD), which is a common protein-protein recognition domain, is conserved in the N-terminal intracellular domain of all TRPV channels and predicted to contain three to four ankyrin repeats. Here we report the first structure from the TRPV channel subfamily, a 1.7 A resolution crystal structure of the human TRPV2 ARD. Our crystal structure reveals a six ankyrin repeat stack with multiple insertions in each repeat generating several unique features compared with a canonical ARD. The surface typically used for ligand recognition, the ankyrin groove, contains extended loops with an exposed hydrophobic patch and a prominent kink resulting from a large rotational shift of the last two repeats. The TRPV2 ARD provides the first structural insight into a domain that coordinates nociceptive sensory transduction and is likely to be a prototype for other TRPV channel ARDs.  相似文献   

17.
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.  相似文献   

18.
Li J  Wei Z  Zheng M  Gu X  Deng Y  Qiu R  Chen F  Ji C  Gong W  Xie Y  Mao Y 《Journal of molecular biology》2006,355(5):980-988
Guanosine monophosphate reductase (GMPR) catalyzes the irreversible and NADPH-dependent reductive deamination of GMP to IMP, and plays a critical role in re-utilization of free intracellular bases and purine nucleosides. Here, we report the first crystal structure of human GMP reductase 2 (hGMPR2) in complex with GMP at 3.0 A resolution. The protein forms a tetramer composed of subunits adopting the ubiquitous (alpha/beta)8 barrel fold. Interestingly, the substrate GMP is bound to hGMPR2 through interactions with Met269, Ser270, Arg286, Ser288, and Gly290; this makes the conformation of the adjacent flexible binding region (residues 268-289) fixed, much like a door on a hinge. Structure comparison and sequence alignment analyses show that the conformation of the active site loop (residues 179-187) is similar to those of hGMPR1 and inosine monophosphate dehydrogenases (IMPDHs). We propose that Cys186 is the potential active site, and that the conformation of the loop (residues 129-133) suggests a preference for the coenzyme NADPH over NADH. This structure provides important information towards understanding the functions of members of the GMPR family.  相似文献   

19.
BACE2 is a membrane-bound aspartic protease of the A1 family with a high level of sequence homology to BACE1. While BACE1 is involved in the generation of amyloid plaques in Alzheimer's disease by cleaving Abeta-peptides from the amyloid precursor protein, the physiological function of BACE2 is not well understood. BACE2 appears to be associated with the early onset of dementia in patients with Down's syndrome, and it has been shown to be highly expressed in breast cancers. Further, it may participate in the function of normal and abnormal processes of human muscle biology. Similar to other aspartic proteases, BACE2 is expressed as an inactive zymogen requiring the cleavage of its pro-sequence during the maturation process. We have produced mature BACE2 by expression of pro-BACE2 in Escherichia coli as inclusion bodies, followed by refolding and autocatalytic activation at pH 3.4. Using a C and N-terminally truncated BACE2 variant, we were able to crystallize and determine the crystal structure of mature BACE2 in complex with a hydroxyethylamine transition-state mimetic inhibitor at 3.1 angstroms resolution. The structure of BACE2 follows the general fold of A1 aspartic proteases. However, similar to BACE1, its C-terminal domain is significantly larger than that of the other family members. Furthermore, the structure of BACE2 reveals differences in the S3, S2, S1' and S2' active site substrate pockets as compared to BACE1, and allows, therefore, for a deeper understanding of the structural features that may facilitate the design of selective BACE1 or BACE2 inhibitors.  相似文献   

20.
A pyranose 2-oxidase gene from the brown-rot basidiomycete Gloeophyllum trabeum was isolated using homology-based degenerate PCR. The gene structure was determined and compared to that of several pyranose 2-oxidases cloned from white-rot fungi. The G. trabeum pyranose 2-oxidase gene consists of 16 coding exons with canonical promoter CAAT and TATA elements in the 5′UTR. The corresponding G. trabeum cDNA was cloned and contains an ORF of 1,962 base pairs encoding a 653 amino acid polypeptide with a predicted molecular weight of 72 kDa. A Hisx6 tagged recombinant G. trabeum pyranose 2-oxidase was generated and expressed heterologously in Escherichia coli yielding 15 U enzyme activity per ml of induced culture. Structural alignment and phylogenetic analysis were performed and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号