首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian cell cycle is regulated by the cyclin/cyclin-dependent kinase (CDK) phosphorylation of the retinoblastoma (pRB) family of proteins. Cyclin D1 with its CDK4/6 partners initiates the cell cycle and acts as the link between extracellular signals and the cell cycle machinery. Estradiol-17beta (E2) stimulates uterine epithelial cell proliferation, a process that is completely inhibited by pretreatment with progesterone (P4). Previously, we identified cyclin D1 localization as a key point of regulation in these cells with E2 causing its nuclear accumulation and P4 retaining it in the cytoplasm with the resultant inhibition of pRB phosphorylation. Here we show that E2 stimulates phosphoinositide 3-kinase to activate phosphokinase B/AKT to effect an inhibitory phosphorylation of glycogen synthase kinase (GSK-3beta). This pathway is suppressed by P4. Inhibition of the GSK-3beta activity in P4-treated uteri by the specific inhibitor, LiCl, reversed the nuclear accumulation of cyclin D1 and in doing so, caused pRB phosphorylation and the induction of downstream genes, proliferating cell nuclear antigen and Ki67. Conversely, inhibition of phosphoinositide 3 kinase by LY294002 or Wortmanin reversed the E2-induced GSK-3beta Ser9 inhibitory phosphorylation and blocked nuclear accumulation of cyclin D1. These data show the reciprocal actions of E2 and P4 on the phosphoinositide 3-kinase through to the GSK-3beta pathway that in turn regulates cyclin D1 localization and cell cycle progression. These data reveal a novel signaling pathway that links E2 and P4 action to growth factor-mediated signaling in the uterus.  相似文献   

2.
Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G0/G1 phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3beta (GSK-3beta). Depletion of endogenous GSK-3beta by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3beta and found that DIF-1 dephosphorylated GSK-3beta on Ser9 and induced the nuclear translocation of GSK-3beta, suggesting that DIF-1 activated GSK-3beta. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr286 was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3beta-mediated phosphorylation of Thr286.  相似文献   

3.
4.
In search of chemical substances applicable for the treatment of cancer and other proliferative disorders, we studied the signal transduction of Dictyostelium differentiation-inducing factors (DIFs) in mammalian cells mainly using HeLa cells. Although DIF-1 and DIF-3 both strongly inhibited cell proliferation by inducing G(0)/G(1) arrest, DIF-3 was more effective than DIF-1. DIF-3 suppressed cyclin D1 expression at both mRNA and protein levels, whereas the overexpression of cyclin D1 overrode DIF-3-induced cell cycle arrest. The DIF-3-induced decrease in the amount of cyclin D1 protein preceded the reduction in the level of cyclin D1 mRNA. The decrease in cyclin D1 protein seemed to be caused by accelerated proteolysis, since it was abrogated by N-acetyl-Leu-Leu-norleucinal, a proteasome inhibitor. DIF-3-induced degradation of cyclin D1 was also prevented by treatment with lithium chloride, an inhibitor of glycogen synthase kinase-3beta (GSK-3beta), suggesting that DIF-3 induced cyclin D1 proteolysis through the activation of GSK-3beta. Indeed, DIF-3 dephosphorylated Ser(9) and phosphorylated tyrosine on GSK-3beta, and it stimulated GSK-3beta activity in an in vitro kinase assay. Moreover, DIF-3 was revealed to induce the nuclear translocation of GSK-3beta by immunofluorescent microscopy and immunoblotting of subcellular protein fractions. These results suggested that DIF-3 activates GSK-3beta to accelerate the proteolysis of cyclin D1 and that this mechanism is involved in the DIF-3-induced G(0)/G(1) arrest in mammalian cells.  相似文献   

5.
6.
7.
To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of beta-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3beta (GSK-3beta) and inhibition of GSK-3beta attenuated the DIF-1-induced beta-catenin degradation, indicating the involvement of GSK-3beta in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/beta-catenin signaling, resulting in the suppression of cyclin D1 promoter activity.  相似文献   

8.
The aim of this study was to determine the role of GSK-3beta in cardiomyocyte protection afforded by erythropoietin (EPO) against oxidant stress-induced apoptosis. Treatment with EPO (10 units/ml) induced Ser473 phosphorylation of Akt and Ser9 phosphorylation of GSK-3beta and significantly reduced the proportion of apoptotic H9c2 cardiomyocytes after exposure to H2O2 from 38.3 +/- 2.7% to 26.0 +/- 2.9%. This protection was not detected in cells transfected with constitutively active GSK-3beta (S9A), which lacks Ser9 for inhibitory phosphorylation. The antiapoptotic effect of EPO was mimicked completely by GSK-3beta knockdown using small interfering RNA and partly by the transfection with kinase-deficient GSK-3beta (K85R). The level of colocalization of intracellular GSK-3beta with mitochondria assessed by enhanced green fluorescent protein-tagged GSK-3beta or immunocytochemistry was not altered by EPO treatment. However, EPO increased the level of Ser9-phospho-GSK-3beta colocalized with mitochondria by 50% in a phosphatidylinositol 3-kinase-dependent manner. Mitochondrial translocation of Bcl-2-associated X protein (BAX) after exposure to H2O2 was inhibited by EPO pretreatment and by GSK-3beta knockdown. These results suggest that the suppression of GSK-3beta activity by Akt-mediated Ser9 phosphorylation in the mitochondria affords cardiomyocytes tolerance against oxidant-induced apoptosis, possibly by inhibiting the access of BAX to the mitochondria.  相似文献   

9.
Shin SY  Choi BH  Ko J  Kim SH  Kim YS  Lee YH 《Cellular signalling》2006,18(11):1876-1886
Clozapine (CZP), a dibenzodiazepine derivative with a piperazinyl side chain, is in clinical use as an antipsychotic drug. This study investigated the effect of CZP on the modulation of the PI3K/Akt/GSK-3beta pathway in PTEN-negative U-87MG glioblastoma cells. Treatment with CZP rapidly inhibited the basal and EGF-induced phosphorylation of Akt. The inhibition of Akt resulted in the dephosphorylation of GSK-3beta and increased GSK-3beta kinase activity. A voltage-sensitive Ca(2+) channel blocker and calmodulin (CaM) antagonists inhibited Akt phosphorylation, whereas elevation of the intracellular Ca(2+) concentration prevented CZP-induced dephosphorylation of Akt and GSK-3beta, suggesting that Ca(2+)/CaM participates in the inhibition of Akt by CZP in U-87MG cells. In addition, similar to LY294002, CZP arrested cell cycle progression at G0/G1 phase, which was accompanied by decreased expression of cyclin D1. The reduction in the cyclin D1 level induced by CZP was abrogated by the inhibition of GSK-3beta, the inhibition of proteasome-dependent proteolysis, or an increase in the intracellular Ca(2+) concentration. These results suggest that the antipsychotic drug CZP modulates the PI3K/Akt/GSK-3beta pathway by counteracting Ca(2+)/CaM in PTEN-negative U-87MG glioblastoma cells.  相似文献   

10.
Differentiation-inducing factors (DIFs) are putative morphogens that induce cell differentiation in Dictyostelium discoideum. We previously reported that DIF-3 activates glycogen synthase kinase-3beta (GSK-3beta), resulting in the degradation of cyclin D1 in HeLa cells. In this study, we investigated the effect of DIF-3 on cyclin D1 mutants (R29Q, L32A, T286A, T288A, and T286A/T288A) to clarify the precise mechanisms by which DIF-3 degrades cyclin D1 in HeLa cells. We revealed that T286A, T288A, and T286A/T288A mutants were resistant to DIF-3-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr(286) and Thr(288) were critical for cyclin D1 degradation induced by DIF-3. Indeed, DIF-3 markedly elevated the phosphorylation level of cyclin D1, and mutations introduced to Thr(286) and/or Thr(288) prevented the phosphorylation induced by DIF-3. Depletion of endogenous GSK-3beta and dual-specificity tyrosine phosphorylation regulated kinase 1B (DYRK1B) by RNA interference attenuated the DIF-3-induced cyclin D1 phosphorylation and degradation. The effect of DIF-3 on DYRK1B activity was examined and we found that DIF-3 also activated this kinase. Further, we found that not only GSK-3beta but also DYRK1B modulates cyclin D1 subcellular localization by the phosphorylation of Thr(288). These results suggest that DIF-3 induces degradation of cyclin D1 through the GSK-3beta- and DYRK1B-mediated threonine phosphorylation in HeLa cells.  相似文献   

11.
Cyclin D1 binds and regulates the activity of cyclin-dependent kinases (CDKs) 4 and 6. Phosphorylation of the retinoblastoma protein by cyclin D1.CDK4/6 complexes during the G(1) phase of the cell cycle promotes entry into S phase. Cyclin D1 protein is ubiquitinated and degraded by the 26 S proteasome. Previous studies have demonstrated that cyclin D1 ubiquitination is dependent on its phosphorylation by glycogen synthase kinase 3beta (GSK-3beta) on threonine 286 and that this phosphorylation event is greatly enhanced by binding to CDK4 (Diehl, J. A., Cheng, M. G., Roussel, M. F., and Sherr, C. J. (1998) Genes Dev. 12, 3499-3511). We now report an additional pathway for the ubiquitination of free cyclin D1 (unbound to CDKs). We show that, when unbound to CDK4, a cyclin D1-T286A mutant is ubiquitinated. Further, we show that a mutant of cyclin D1 that cannot bind to CDK4 (cyclin D1-KE) is also ubiquitinated in vivo. Our results demonstrate that free cyclin D1 is ubiquitinated independently of its phosphorylation on threonine 286 by GSK-3beta, suggesting that, as has been shown for cyclin E, distinct pathways of ubiquitination lead to the degradation of free and CDK-bound cyclin D1. The pathway responsible for ubiquitination of free cyclin D1 may be important in limiting the effects of cyclin D1 overexpression in a variety of cancers.  相似文献   

12.
13.
Insulin-like growth factor (IGF)-1 is accumulated in the diabetic kidney and is considered to be involved in the development of glomerular sclerosis. Here, we investigate IGF-1 regulation of laminin, an extracellular matrix (ECM) component, and cyclin D1 and p21Cip1, cell-cycle progression factor, expressions in glomerular mesangial cells. We show that IGF-1 increases the level of laminin gamma1 and beta1 subunits approximately 1.5- and 2.5-fold, respectively, in a time-dependent manner. IGF-1 also stimulates protein kinase Akt/PKB phosphorylation at Thr 308, which correlates with its activity, up to 24 h. The Akt activation is coupled with Ser 9 phosphorylation of its downstream target, glycogen synthase kinase-3beta (GSK-3beta), which inhibits its kinase activity. Laminin beta1 is reduced significantly (P < 0.03) by inhibitors of Akt and p38MAPK whereas laminin gamma1 is not affected. Surprisingly, IGF-1 activates the expression of both cyclin D1 and cell-cycle arrest factor, p21Cip1 parallely. Pharmacological inhibition of calcineurin by cyclosporin A blocks IGF-1-induced cyclin D1 and p21Cip1expression significantly (P < 0.05). IGF-1 enhances cellular metabolic activity and viability of rat mesangial cells; however, they are arrested at the G1 phase of cell cycle as revealed by the FACS analysis. These results indicate that IGF-1 mediates mesangial cell-cycle progression, hypertrophy, and ECM protein synthesis. The Akt/GSK-3beta, p38MAPK, and calcineurin pathways may play an important role in IGF-1 signaling, cell-cycle regulation, and matrix gene expression in mesangial cells leading to the development of diabetic glomerulopathy.  相似文献   

14.
15.
Anthrax lethal toxin (LeTx) is a virulence factor causing immune suppression and toxic shock of Bacillus anthracis infected host. It inhibits cytokine production and cell proliferation/differentiation in various immune cells. This study showed that a brief exposure of LeTx caused a continual MEK1 cleavage and prevented tumor necrosis factor-alpha (TNF) production in response to lipopolysaccharide (LPS) in non-proliferating cells such as human peripheral blood mononuclear cells or mouse primary peritoneal macrophages. In human monocytic cell lines U-937 and THP-1, LeTx induced cell cycle arrest in G0-G1 phase by rapid down-regulation of cyclin D1/D2 and checkpoint kinase 1 through MEK1 inhibition. However, THP-1 cells adaptively adjusted to LeTx and overrode cell cycle arrest by activating the phosphatidylinositol 3-kinase/Akt signaling pathway. Inhibitory Ser-9 phosphorylation of glycogen synthase kinase 3beta (GSK3beta) by Akt prevented proteasome-mediated cyclin D1 degradation and induced cell cycle progress in LeTx-intoxicated THP-1 cells. Recovery from cell cycle arrest was required before recovering from on-going MEK1 cleavage and suppression of TNF production. Furthermore, pretreatment with LeTx or the GSK3-specific inhibitor SB-216763, or transfection with dominant active mutant Akt or degradation-defected mutant cyclin D1 protected cells from LeTx-induced cell cycle arrest, on-going MEK1 cleavage and suppression of TNF production. These results indicate that modulation of phosphatidylinositol 3-kinase/Akt/GSK3beta signaling cascades can be beneficial for protecting or facilitating recovery from cellular LeTx intoxication in cells that depend on basal MEK1 activity for proliferation.  相似文献   

16.
Inhibitor 2 (I-2) is a ubiquitous regulator of type 1 protein phosphatase (PP1). Previous in vitro studies suggested that its inhibitory activity towards PP1 is regulated by phosphorylation at Thr72 by glycogen synthase kinase-3beta (GSK-3beta), and at Ser86, Ser120, and Ser121 by casein kinase 2 (CK2). Here we report that GSK-3beta expressed in COS-7 cells phosphorylates wild-type I-2 but not an I-2 mutant carrying a T to A substitution at residue 72, showing that GSK-3beta phosphorylates I-2 at T72 in vivo as well. Co-immunoprecipitation study demonstrated that HA-GSK-3beta and I-2-FLAG co-exist in a same complex in the intact cells, but they do not bind directly. It is noteworthy that co-expression of Myc-PP1C significantly increased co-precipitation of HA-GSK-3beta with I-2-FLAG, showing a complex formation of HA-GSK-3beta/Myc-PP1C / I-2-FLAG in vivo. Further studies using a GSK-3beta kinase-dead mutant and LiCl, an inhibitor of GSK-3beta, showed that the enzyme activity of GSK-3beta is required for co-precipitation. IP-Western study using several I-2 mutants substituted at phosphorylation sites (T72, S86, S120, and S121) suggested that phosphorylation of I-2 by CK2 is also involved in enhancement of association between GSK-3beta and I-2 in vivo. This study is the first demonstration that GSK-3beta associates with PP1C/I-2 complex and phosphorylates I-2 at T72 in the intact cells.  相似文献   

17.
We have recently shown that while adrenaline alone has no effect on the activation of Protein Kinase B (PKB) in rat soleus muscle, it greatly potentiates the effects of insulin (Brennesvik et al., Cellular Signalling 17: 1551-1559, 2005). In the current study we went on to investigate whether this was paralleled by a similar effect on GSK-3, which is a major PKB target. Surprisingly adrenaline alone increased phosphorylation of GSK-3beta Ser9 and GSK-3alpha Ser21 and adrenaline's effects were additive with those of insulin but did not synergistically potentiate insulin action. Dibutyryl-cAMP (5 mM) and the PKA specific cAMP analogue N6-Benzoyl-cAMP (2 mM) increased GSK-3beta Ser9 phosphorylation, whereas the Epac specific cAMP analogue 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (1 mM) did not. Wortmannin (PI 3-kinase inhibitor; 1 microM) blocked insulin-stimulated GSK-3 phosphorylation completely, but adrenaline increased GSK-3beta Ser9 phosphorylation in the presence of wortmannin. The PKA inhibitor H89 (50 microM) reduced adrenaline-stimulated GSK-3beta Ser9 phosphorylation but did not influence the effects of insulin. Insulin-stimulated GSK-3 Ser9 phosphorylation was paralleled by decreased glycogen synthase phosphorylation at the sites phosphorylated by GSK-3 as expected. However, adrenaline-stimulated GSK-3 Ser9 phosphorylation was paralleled by increased glycogen synthase phosphorylation indicating this pool of GSK-3 may not be directly involved in phosphorylation of glycogen synthase. Our results indicate the existence of at least two distinct pools of GSK-3beta in soleus muscle, one phosphorylated by PKA and another by PKB. Further, we hypothesise that each of these pools is involved in the control of different cellular processes.  相似文献   

18.
Wang CY  Tsai AC  Peng CY  Chang YL  Lee KH  Teng CM  Pan SL 《PloS one》2012,7(2):e31195
The traditional Chinese medicine component dehydrocostuslactone (DHC) isolated from Saussurea costus (Falc.) Lipschitz, has been shown to have anti-cancer activity. Angiogenesis is an essential process in the growth and progression of cancer. In this study, we demonstrated, for the first time, the anti-angiogenic mechanism of action of DHC to be via the induction of cell cycle progression at the G0/G1 phase due to abrogation of the Akt/glycogen synthase kinase-3β (GSK-3β)/cyclin D1 and mTOR signaling pathway. First, we demonstrated that DHC has an anti-angiogenic effect in the matrigel-plug nude mice model and an inhibitory effect on human umbilical vein endothelial cell (HUVEC) proliferation and capillary-like tube formation in vitro. DHC caused G0/G1 cell cycle arrest, which was associated with the down-regulation of cyclin D1 expression, leading to the suppression of retinoblastoma protein phosphorylation and subsequent inhibition of cyclin A and cdk2 expression. With respect to the molecular mechanisms underlying the DHC-induced cyclin D1 down-regulation, this study demonstrated that DHC significantly inhibits Akt expression, resulting in the suppression of GSK-3β phosphorylation and mTOR expression. These effects are capable of regulating cyclin D1 degradation, but they were significantly reversed by constitutively active myristoylated (myr)-Akt. Furthermore, the abrogation of tube formation induced by DHC was also reversed by overexpression of Akt. And the co-treatment with LiCl and DHC significantly reversed the growth inhibition induced by DHC. Taken together, our study has identified Akt/GSK-3β and mTOR as important targets of DHC and has thus highlighted its potential application in angiogenesis-related diseases, such as cancer.  相似文献   

19.
The activity of NF-kappaB is controlled at several levels including the phosphorylation of the strongly transactivating p65 (RelA) subunit. However, the overall number of phosphorylation sites, the signaling pathways and protein kinases that target p65 NF-kappaB and the functional role of these phosphorylations are still being uncovered. Using a combination of peptide arrays with in vitro kinase assays we identify serine 468 as a novel phosphorylation site of p65 NF-kappaB. Serine 468 lies within a GSK-3beta consensus site, and recombinant GSK-3beta specifically phosphorylates a GST-p65-(354-551) fusion protein at Ser(468) in vitro. In intact cells, phosphorylation of endogenous Ser(468) of p65 is induced by the PP1/PP2A phosphatase inhibitor calyculin A and this effect is inhibited by the GSK-3beta inhibitor LiCl. Reconstitution of p65-deficient cells with a p65 protein where serine 468 was mutated to alanine revealed a negative regulatory role of serine 468 for NF-kappaB activation. Collectively our results suggest that a GSK-3beta-PP1-dependent mechanism regulates phosphorylation of p65 NF-kappaB at Ser(468) in unstimulated cells and thereby controls the basal activity of NF-kappaB.  相似文献   

20.
Wang Y  Feng H  Bi C  Zhu L  Pollard JW  Chen B 《FEBS letters》2007,581(16):3069-3075
We report that glycogen synthase kinase (GSK)-3beta is phosphorylated at ser9 and inactivated in uterine epithelial cells from E(2)-treated cyclin D1 null mutant mice. Simultaneous administration of P(4) together with E(2) blocked this effect. Pharmacological inhibition of GSK-3beta activity in mice treated with P(4)E(2) reversed the nuclear exclusion of cyclin D2 in the uterine epithelial cells and this caused phosphorylation of Rb protein and progression of cells towards S-phase. Our results indicate that GSK-3beta is a major target of E(2) and P(4) in regulation of cyclin D2 localization in the mouse uterine epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号