首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fermentation strategies for the production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes were developed. The pH-stat fed-batch cultures of E. coli CGSC 4401 harboring pJC4, a stable plasmid containing the A. latus PHA biosynthesis genes, were carried out with a concentrated whey solution containing 280 g of lactose equivalent per liter. Final cell and PHB concentrations of 119.5 and 96.2 g/liter, respectively, were obtained in 37.5 h, which resulted in PHB productivity of 2.57 g/liter/h.  相似文献   

2.
The supra molecular weight poly ([R]-3-hydroxybutyrate) (PHB), having a molecular weight greater than 2 million Da, has recently been found to possess improved mechanical properties compared with the normal molecular weight PHB, which has a molecular weight of less than 1 million Da. However, applications for this PHB have been hampered due to the difficulty of its production. Reported here, is the development of a new metabolically engineeredEscherichia coli strain and its fermentation for high level production of supra molecular weight PHB. RecombinantE. coli strains, harboring plasmids of different copy numbers containing theAlcaligenes latus PHB biosynthesis genes, were cultured and the molecular weights of the accumulated PHB were compared. When the recombinantE. coli XL 1-Blue, harboring a medium-copy-number pJC2 containing theA. latus PHB biosynthesis genes, was cultivated by fed-batch culture at pH 6.0, supra molecular weight PHB could be produced at up to 89.8 g/L with a productivity of 2.07 g PHB/L-h. The molecular weight of PHB obtained under these conditions was as high as 22 MDa, exceeding by an order of magnitude the molecular weight of PHB typically produced inRalstonia eutropha or recombinantE. coli  相似文献   

3.
The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes.  相似文献   

4.
Fermentation strategies for the production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes were developed. The pH-stat fed-batch cultures of E. coli CGSC 4401 harboring pJC4, a stable plasmid containing the A. latus PHA biosynthesis genes, were carried out with a concentrated whey solution containing 280 g of lactose equivalent per liter. Final cell and PHB concentrations of 119.5 and 96.2 g/liter, respectively, were obtained in 37.5 h, which resulted in PHB productivity of 2.57 g/liter/h.  相似文献   

5.
Poly(3-hydroxybutyrate) (PHB) was produced by cultivating several gram-negative bacteria, including Ralstonia eutropha, Alcaligenes latus, and recombinant Escherichia coli. PHB was recovered from these bacteria by two different methods, and the endotoxin levels were determined. When PHB was recovered by the chloroform extraction method, the endotoxin level was less than 10 endotoxin units (EU) per g of PHB irrespective of the bacterial strains employed and the PHB content in the cell. The NaOH digestion method, which was particularly effective for the recovery of PHB from recombinant E. coli, was also examined for endotoxin removal. The endotoxin level present in PHB recovered by 0.2 N NaOH digestion for 1 h at 30°C was higher than 104 EU/g of PHB. Increasing the digestion time or NaOH concentration reduced the endotoxin level to less than 1 EU/g of PHB. It was concluded that PHB with a low endotoxin level, which can be used for various biomedical applications, could be produced by chloroform extraction. Furthermore, PHB with a much lower endotoxin level could be produced from recombinant E. coli by simple NaOH digestion.  相似文献   

6.
A new fermentation strategy using cell recycle membrane system was developed for the efficient production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes. By cell recycle, fed-batch cultivation employing an external membrane module, the working volume of fermentation could be constantly maintained at 2.3 l. The final cell concentration, PHB concentration and PHB content of 194 g l–1, 168 g l–1 and 87%, respectively, were obtained in 36.5 h by the pH-stat cell recycle fed-batch culture using whey solution concentrated to contain 280 g lactose l–1 as a feeding solution, resulting in a high productivity of 4.6 g PHB l–1 h–1.  相似文献   

7.
Nine anaerobic promoters were cloned and constructed upstream of PHB synthesis genes phbCAB from Ralstonia eutropha for the micro- or anaerobic PHB production in recombinant Escherichia coli. Among the promoters, the one for alcohol dehydrogenase (P adhE ) was found most effective. Recombinant E. coli JM 109 (pWCY09) harboring P adhE and phbCAB achieved a 48% PHB accumulation in the cell dry weight after 48 h of static culture compared with only 30% PHB production under its native promoter. Sixty-seven percent PHB was produced in the dry weight (CDW) of an acetate pathway deleted (Δpta deletion) E. coli JW2294 harboring the vector pWCY09. In a batch process conducted in a 5.5-l NBS fermentor containing 3 l glucose LB medium, E. coli JW2294 (pWCY09) grew to 7.8 g/l CDW containing 64% PHB after 24 h of microaerobic incubation. In addition, molecular weight of PHB was observed to be much higher under microaerobic culture conditions. The high activity of P adhE appeared to be the reason for improved micro- or anaerobic cell growth and PHB production while high molecular weight contributed to the static culture condition.  相似文献   

8.
9.
Degradation of poly(3-hydroxybutyrate) (PHB) by the thiolytic activity of the PHB depolymerase PhaZ1 from Ralstonia eutropha H16 was analyzed in the presence of different phasins. An Escherichia coli strain was constructed that harbored the genes for PHB synthesis (phaCAB), the phasin PhaP1, and the PHB depolymerase PhaZ1. PHB was isolated in the native form (nPHB) from this recombinant E. coli strain, and the in vitro degradation of the polyester was examined. Degradation resulted in the formation of the expected 3-hydroxybutyryl coenzyme A (3HB-CoA) and in the formation of a second product, which occurred in significantly higher concentrations than 3HB-CoA. This second product was identified by liquid chromatography mass spectrometry (LC-MS) as crotonyl-CoA. Replacement of PhaP1 by PhaP2 or PhaP4 resulted in a lower degradation rate, whereas the absence of the phasins prevented the degradation of nPHB by the PHB depolymerase PhaZ1 almost completely. In addition, the in vitro degradation of nPHB granules isolated from R. eutropha H16 (wild type) and from the R. eutropha ΔphaP1 and ΔphaP1-4 deletion mutants was examined. In contrast to the results obtained with nPHB granules isolated from E. coli, degradation of nPHB granules isolated from the wild type of R. eutropha yielded high concentrations of 3HB-CoA and low concentrations of crotonyl-CoA. The degradation of nPHB granules isolated from the ΔphaP1 and ΔphaP1-4 deletion mutants of R. eutropha was significantly reduced in comparison to that of nPHB granules isolated from wild-type R. eutropha. Stereochemical analyses of 3HB-CoA revealed that the (R) stereoisomer was collected after degradation of granules isolated from E. coli, whereas the (S) stereoisomer was collected after degradation of granules isolated from R. eutropha. Based on these results, a newly observed mechanism in the degradation pathway for PHB in R. eutropha is proposed which is connected by crotonyl-CoA to the β-oxidation cycle. According to this model, the NADPH-dependent synthesis of PHB with (R)-3HB-CoA as the intermediate and the PHB degradation yielding (S)-3HB-CoA, which is further converted in an NAD-dependent reaction, are separated.  相似文献   

10.
A recombined E. coli-A. latus shuttle vector plasmid pKTC32 harboring the cloned phbC gene from Alcaligenes latus was constructed, and transformed by electroporation into the parent A. latus in order to amplify the PHB synthase. The rate of PHB biosynthesis and content of PHB increased significantly after the transformation of the cloned phbC gene, plus the plasmid stability remained relatively high at around 85%. The enhanced PHB biosynthesis mechanism produced in the transformant A. latus was investigated by measuring the variations of enzyme activities related to the PHB biosynthesis.  相似文献   

11.
A heterologous metabolism of polyhydroxyalkanoate (PHA) biosynthesis and degradation was established in Escherichia coli by introducing the Ralstonia eutropha PHA biosynthesis operon along with the R. eutropha intracellular PHA depolymerase gene. By with this metabolically engineered E. coli, enantiomerically pure (R)-3-hydroxybutyric acid (R3HB) could be efficiently produced from glucose. By employing a two-plasmid system, developed as the PHA biosynthesis operon on a medium-copy-number plasmid and the PHA depolymerase gene on a high-copy-number plasmid, R3HB could be produced with a yield of 49.5% (85.6% of the maximum theoretical yield) from glucose. By integration of the PHA biosynthesis genes into the chromosome of E. coli and by introducing a plasmid containing the PHA depolymerase gene, R3HB could be produced without plasmid instability in the absence of antibiotics. This strategy can be used for the production of various enantiomerically pure (R)-hydroxycarboxylic acids from renewable resources.  相似文献   

12.
Polyhydroxyalkanoates (PHAs) are biologically produced polyesters that have potential application as biodegradable plastics. Especially important are the short-chain-length-medium-chain-length (SCL-MCL) PHA copolymers, which have properties ranging from thermoplastic to elastomeric, depending on the ratio of SCL to MCL monomers incorporated into the copolymer. Because of the potential wide range of applications for SCL-MCL PHA copolymers, it is important to develop and characterize metabolic pathways for SCL-MCL PHA production. In previous studies, coexpression of PHA synthase genes and the 3-ketoacyl-acyl carrier protein reductase gene (fabG) in recombinant Escherichia coli has been shown to enhance PHA production from related carbon sources such as fatty acids. In this study, a new fabG gene from Pseudomonas sp. 61-3 was cloned and its gene product characterized. Results indicate that the Pseudomonas sp. 61-3 and E. coli FabG proteins have different substrate specificities in vitro. The current study also presents the first evidence that coexpression of fabG genes from either E. coli or Pseudomonas sp. 61-3 with fabH(F87T) and PHA synthase genes can enhance the production of SCL-MCL PHA copolymers from nonrelated carbon sources. Differences in the substrate specificities of the FabG proteins were reflected in the monomer composition of the polymers produced by recombinant E. coli. SCL-MCL PHA copolymer isolated from a recombinant E. coli strain had improved physical properties compared to the SCL homopolymer poly-3-hydroxybutyrate. This study defines a pathway to produce SCL-MCL PHA copolymer from the fatty acid biosynthesis that may impact on PHA production in recombinant organisms.  相似文献   

13.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

14.
It was shown recently that recombinant Escherichia coli, defective in the β-oxidation cycle and harboring a medium-chain-length (MCL) poly(3-hydroxyalkanoate) (PHA) polymerase-encoding gene of Pseudomonas, is able to produce MCL PHA from fatty acids but not from sugars or gluconate (S. Langenbach, B. H. A. Rehm, and A. Steinbüchel, FEMS Microbiol. Lett. 150:303–309, 1997; Q. Ren, Ph.D. thesis, ETH Zürich, Zürich, Switzerland, 1997). In this study, we report the formation of MCL PHA from gluconate by recombinant E. coli. By introduction of genes coding for an MCL PHA polymerase and the cytosolic thioesterase I (′thioesterase I) into E. coli JMU193, we were able to engineer a pathway for the synthesis of MCL PHA from gluconate. We used two expression systems, i.e., the bad promoter and alk promoter, for the ′thioesterase I- and PHA polymerase-encoding genes, respectively, which enabled us to modulate their expression independently over a range of inducer concentrations, which resulted in a maximum MCL PHA accumulation of 2.3% of cell dry weight from gluconate. We found that the amount of PHA and the ′thioesterase I activity are directly correlated. Moreover, the polymer accumulated in the recombinant E. coli consisted mainly of 3-hydroxyoctanoate monomers. On the basis of our data, we propose an MCL PHA biosynthesis pathway scheme for recombinant E. coli JMU193, harboring PHA polymerase and ′thioesterase I, when grown on gluconate, which involves both de novo fatty acid synthesis and β-oxidation.  相似文献   

15.
Polyhydroxyalkanoates (PHAs) are accumulated as intracellular granules by many bacteria under unfavorable conditions, enhancing their fitness and stress resistance. Poly(3-hydroxybutyrate) (PHB) is the most widespread and best-known PHA. Apart from the genes that catalyze polymer biosynthesis, natural PHA producers have several genes for proteins involved in granule formation and/or with regulatory functions, such as phasins, that have been shown to affect polymer synthesis. This study evaluates the effect of PhaP, a phasin, on bacterial growth and PHB accumulation from glycerol in bioreactor cultures of recombinant Escherichia coli carrying phaBAC from Azotobacter sp. strain FA8. Cells expressing phaP grew more, and accumulated more PHB, both using glucose and using glycerol as carbon sources. When cultures were grown in a bioreactor using glycerol, PhaP-bearing cells produced more polymer (2.6 times) and more biomass (1.9 times) than did those without the phasin. The effect of this protein on growth promotion and polymer accumulation is expected to be even greater in high-density cultures, such as those used in the industrial production of the polymer. The recombinant strain presented in this work has been successfully used for the production of PHB from glycerol in bioreactor studies, allowing the production of 7.9 g/liter of the polymer in a semisynthetic medium in 48-h batch cultures. The development of bacterial strains that can efficiently use this substrate can help to make the industrial production of PHAs economically feasible.  相似文献   

16.
Several recombinant Escherichia coli strains harboring the Alcaligenes eutrophus polyhydroxyalkanoate biosynthesis genes were used to produce poly(3-hydroxybutyrate), PHB, from xylose. By flask culture of TG1 (pSYL107) in a defined medium containing 20?g/l xylose, PHB concentration of 1.7?g/l was obtained. Supplementation of a small amount of cotton seed hydrolysate or soybean hydrolysate could enhance PHB production by more than two fold. The PHB concentration, PHB content, and PHB yield on xylose obtained by supplementing soybean hydrolysate were 4.4?g/l, 73.9%, and 0.226?g PHB/g xylose, respectively.  相似文献   

17.
Recombinant strains of Ralstonia eutropha PHB 4, which harbored Aeromonas caviae polyhydroxyalkanoates (PHA) biosynthesis genes under the control of a promoter for R. eutropha phb operon, were examined for PHA production from various alkanoic acids. The recombinants produced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from hexanoate and octanoate, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxypentano ate) [P(3HB-co-3HV-co-3HHp)] from pentanoate and nonanoate. One of the recombinant strains, R. eutropha PHB 4/pJRDBB39d3 harboring ORF1 and PHA synthase gene of A. caviae (phaC(Ac)) accumulated copolyesters with much more 3HHx or 3HHp fraction than the other recombinant strains. To investigate the relationship between PHA synthase activity and in vivo PHA biosynthesis in R. eutropha, the PHB- 4 strains harboring pJRDBB39d13 or pJRDEE32d13 were used, in which the heterologous expression of phaC(Ac) was controlled by promoters for R. eutropha phb operon and A. caviae pha operon, respectively. The PHA contents and PHA accumulation rates were similar between the two recombinant strains in spite of the quite different levels of PHA synthase activity, indicating that the polymerization step is not the rate-determining one in PHA biosynthesis by R. eutropha. The molecular weights of poly(3-hydroxybutyrate) produced by the recombinant strains were also independent of the levels of PHA synthase activity. It has been suggested that a chain-transfer agent is generated in R. eutopha cells to regulate the chain length of polymers.  相似文献   

18.
A recombinant E. coli strain (K24K) was constructed and evaluated for poly(3-hydroxybutyrate) (PHB) production from whey and corn steep liquor as main carbon and nitrogen sources. This strain bears the pha biosynthetic genes from Azotobacter sp. strain FA8 expressed from a T5 promoter under the control of the lactose operator. K24K does not produce the lactose repressor, ensuring constitutive expression of genes involved in lactose transport and utilization. PHB was efficiently produced by the recombinant strain grown aerobically in fed-batch cultures in a laboratory scale bioreactor on a semisynthetic medium supplemented with the agroindustrial by-products. After 24 h, cells accumulated PHB to 72.9% of their cell dry weight, reaching a volumetric productivity of 2.13 g PHB per liter per hour. Physical analysis of PHB recovered from the recombinants showed that its molecular weight was similar to that of PHB produced by Azotobacter sp. strain FA8 and higher than that of the polymer from Cupriavidus necator and that its glass transition temperature was approximately 20°C higher than those of PHBs from the natural producer strains.  相似文献   

19.
F Wang  S Y Lee 《Applied microbiology》1997,63(12):4765-4769
Recombinant Escherichia coli XL1-Blue harboring a high-copy-number plasmid containing the Alcaligenes eutrophus polyhydroxyalkanoate synthesis genes could efficiently synthesize poly(3-hydroxybutyrate) (PHB) in a complex medium containing yeast extract and tryptone but not in a defined medium. One of the reasons for the reduced PHB production in a defined medium was thought to be severe filamentation of cells in this medium. By overexpressing an essential cell division protein, FtsZ, in recombinant E. coli producing PHB, filamentation could be suppressed and PHB could be efficiently produced in a defined medium. A high PHB concentration of 149 g/liter, with high productivity of 3.4 g of PHB/liter/h, could be obtained by the pH-stat fed-batch culture of the filamentation-suppressed recombinant E. coli in a defined medium. It was also found that insufficient oxygen supply at a dissolved oxygen concentration (DOC) of 1 to 3% of air saturation during active PHB synthesis phase did not negatively affect PHB production. By growing cells to the concentration of 110 g/liter and then controlling the DOC in the range of 1 to 3% of air saturation, a PHB concentration of 157 g/liter and PHB productivity of 3.2 g of PHB/liter/h were obtained. For the scale-up studies, fed-batch culture was carried out in a 50-liter stirred tank fermentor, in which the DOC decreased to zero when cell concentration reached 50 g/liter. However, a relatively high PHB concentration of 101 g/liter and PHB productivity of 2.8 g of PHB/liter/h could still be obtained, which demonstrated the possibility of industrial production of PHB in a defined medium by employing the filamentation-suppressed recombinant E. coli.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) can be divided into three main types based on the sizes of the monomers incorporated into the polymer. Short-chain-length (SCL) PHAs consist of monomer units of C3 to C5, medium-chain-length (MCL) PHAs consist of monomer units of C6 to C14, and SCL-MCL PHAs consist of monomers ranging in size from C4 to C14. Although previous studies using recombinant Escherichia coli have shown that either SCL or MCL PHA polymers could be produced from glucose, this study presents the first evidence that an SCL-MCL PHA copolymer can be made from glucose in recombinant E. coli. The 3-ketoacyl-acyl carrier protein synthase III gene (fabH) from E. coli was modified by saturation point mutagenesis at the codon encoding amino acid 87 of the FabH protein sequence, and the resulting plasmids were cotransformed with either the pAPAC plasmid, which harbors the Aeromonas caviae PHA synthase gene (phaC), or the pPPAC plasmid, which harbors the Pseudomonas sp. strain 61-3 PHA synthase gene (phaC1), and the abilities of these strains to accumulate PHA from glucose were assessed. It was found that overexpression of several of the mutant fabH genes enabled recombinant E. coli to induce the production of monomers of C4 to C10 and subsequently to produce unusual PHA copolymers containing SCL and MCL units. The results indicate that the composition of PHA copolymers may be controlled by the monomer-supplying enzyme and further reinforce the idea that fatty acid biosynthesis may be used to supply monomers for PHA production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号