首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
CD4+ TCR-gamma delta+ T cells comprise a very small subset of TCR-gamma delta+ T cells. CD4+ TCR gamma delta+ T cell clones were established to study the phenotypical and functional characteristics of these cells. Thirty-four CD4+ TCR-gamma delta+ T cell clones were established after sorting CD4+ T cells from a pre-expanded TCR-gamma delta+ T cell population. These clones as well as the CD4- TCR-gamma delta+ T cells from the same donor used V gamma 2 and V delta 2. In a second cloning experiment CD4+ TCR-gamma delta+ T cells were cloned directly from freshly isolated TCR-gamma delta+ T cells using a cloning device coupled to a FACS sorter. Forty-three clones were obtained, which all expressed CD4 and TCR-gamma delta. Eleven of these clones used V delta 1 and three of them coexpressed V gamma 2. The other CD4+ TCR-gamma delta+ T cell clones used both V delta 2 and V gamma 2. CD4+ TCR-gamma delta+ T cell clones expressed CD28 irrespective of the V gamma or V delta usage, and were CD11b negative. Three CD4-CD8+ TCR-gamma delta+ clones expressed CD8 alpha but not CD8 beta and were CD11b positive. CD28 expression among CD4-CD8+ and CD4-CD8- was variable but lower than on CD4+ T cell clones. CD4- TCR-gamma delta+ T cell clones using V gamma 2 and V delta 2 specifically lyse the Burkitt lymphoma cell line Daudi and secrete low levels of IFN-gamma and granulocyte-macrophage-CSF upon stimulation with Daudi. In contrast, most CD4+ T cell clones that use V gamma 2 and V delta 2 had a very low lytic activity against Daudi cells and secrete high levels of IFN-gamma and granulocyte-macrophage-CSF after stimulation with Daudi cells. The NK-sensitive cell line K562 was killed efficiently by the CD4- TCR-gamma delta+ T cell clones, but not by CD4+ TCR-gamma delta+ T cell clones, and could not induce cytokine secretion in CD4+ or CD4- T cell clones. CD4+ TCR-gamma delta+ T cell clones, but not the CD4- clones, could provide bystander cognate T cell help for production of IgG, IgM, and IgA in the presence of IL-2 and IgE in the presence of IL-4. Thus, CD4+ TCR-gamma delta+ T cells are similar to CD4+ TCR-alpha beta+ T cells in their abilities to secrete high levels of cytokines and to provide T cell help in antibody production.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
To elucidate the developmental pattern and diversity of murine cluster of differentiation (CD)3-associated TCR-gamma delta heterodimers, adult and fetal thymocytes were examined for cell-surface expression of various gamma- and delta-encoded TCR. Biochemical analysis, using antisera specific for distinct C gamma gene products, revealed the presence of T cells expressing C gamma 1 and/or C gamma 4 heterodimers in adult and fetal CD4- CD8- thymocyte populations. Although CD4-CD8- thymocyte populations express both C gamma 1 and C gamma 4 TCR-gamma delta heterodimers early in fetal thymus development, the relative level of C gamma 4-expressing T cells was significantly lower than previously observed in peripheral lymphoid organs. In addition, biochemical studies revealed the presence of TCR-gamma delta heterodimer(s) expressed during fetal ontogeny which were not detected in adult thymocyte or peripheral lymphoid populations. Studies of N-glycosylation patterns of one of these heterodimers suggested that it contained a rearranged V gamma 3/C gamma 1 gene product. To examine in detail individual TCR-gamma delta heterodimers, a panel of TCR-gamma delta expressing hybridomas was prepared. Biochemical analysis at the clonal level revealed that indeed three distinct TCR-gamma delta heterodimers were present at day 16 of fetal thymus development, with TCR-gamma-chains most likely encoded by V gamma 2/C gamma 1, V gamma 3/C gamma 1, and V gamma/C gamma 4. Together these findings suggest an ordered development of TCR-gamma delta T cells in the thymus and selective expression of distinct TCR-gamma delta subsets in peripheral lymphoid organs such as spleen and lymph nodes.  相似文献   

3.
Intraepithelial T lymphocytes (IEL) are dispersed throughout the intestinal epithelial lining but their role in cellular immune defense is unknown. Their location suggests that their highly activated state may be due to constant exposure to bacterial Ag. To study IEL specificity and function we have prepared a panel of IEL-T cell hybridomas from both adult and weanling C57B1/6 mice. Many of these expressed TCR-gamma delta, a cell type rare in peripheral lymph nodes and spleen but predominant at epithelial surfaces. We have identified a subset of gamma delta T cells from weanling mice which is self reactive, i.e., these hybrids secrete IL-2 spontaneously, without antigenic stimulation or a requirement for APC. Self-reactive TCR-gamma delta+ hybrids and lines, all of which bear a particular TCR (V gamma 1.1C gamma 4V delta 6), have previously been derived from neonatal thymus and the skin. Northern blot and immunoprecipitation analyses suggest that the self-reactive IEL hybrids also bear a C gamma 4/V delta 6 TCR. Antibody inhibition experiments showed that the self-reactivity of the IEL hybrids is TCR mediated. Spontaneous IL-2 production was blocked by soluble anti-CD3 and anti-TCR-gamma delta antibodies but not by antibodies to the TCR-alpha beta. The self-reactive IEL hybrids lack class II MHC and the class I-like proteins CD1 and TLA but express class I MHC. IEL hybrids may also require the vitronectin receptor as an accessory molecule for their activation because spontaneous IL-2 production is blocked by antibody to the vitronectin receptor as well as by the extracellular matrix protein active site peptide RGDS, but not the control peptide RGES. V gamma 1.1C gamma 4V delta 6 T cells in the thymus, skin, and intestine may represent a small and unique subpopulation of lymphocytes with a potential for autoimmune reactivity at peripheral sites.  相似文献   

4.
Research on the specificities, functions, and maturation of T cells would be greatly aided by a collection of monoclonal antibodies which distinguishes different types of TCR. With this end in mind hamsters were immunized and tested for production of pan-reactive anti-mouse alpha beta TCR antibodies. In this report we describe the properties and uses of a mAb, H57-597, produced from one of these animals. The mAb reacts with surface receptors on all alpha beta TCR-bearing cells and does not react with receptors on gamma delta+ T cells. In an immobilized form, this antibody can directly activate T cells bearing alpha beta TCR. It can be used in immunoprecipitation reactions to precipitate receptor from the appropriate cell types. In combination with anti-CD3, the antibody can be used in cytofluorographic analyses to measure numbers of CD3+, alpha beta+, and CD3+, gamma delta+ cells in the thymus and periphery.  相似文献   

5.
The role of CD3 and CD8 Ag in CD16-mediated CTL triggering was studied in TCR-alpha beta+ and TCR-gamma delta+ granular lymphocytes (GL). In TCR-alpha beta+/CD3+4-8+16+ GL obtained from patients with GL-proliferative disorders, antibody-dependent cellular cytotoxicity was inhibited by anti-CD3 and anti-CD8 mAb. Anti-CD3 mAb also inhibited antibody-dependent cellular cytotoxicity activity of TCR-gamma delta+/CD3+4-8-16+ GL from a patient and that of TCR-gamma delta+/CD3+4-8+/-16+ T cell clones established from patients with proliferating TCR-gamma delta+ GL. In TCR-gamma delta+ T cell clones, cytotoxicity against Fc gamma R+ targets was induced by stimulation of CD16 Ag with anti-CD16 mAb, and such cytotoxicity was also inhibited by anti-CD3 mAb. These results indicate that CD3 and CD8 molecules play a regulatory role in CD16-mediated CTL triggering.  相似文献   

6.
A TCR heterodimer composed of a TCR gamma-chain and a TCR delta-chain was found to be expressed in association with CD3 by a small population of human peripheral blood T cells, thymocytes, and certain leukemic T cell lines. The leukemic T cell lines PEER and Lyon-1 express such a TCR-gamma delta/CD3 complex at the cell surface. In addition, PEER and Lyon-1 cells transcribe a productively rearranged TCR-beta gene. Introduction of TCR alpha-chain cDNA of human or murine origin resulted in cell surface expression of a TCR-alpha beta/CD3 complex on PEER and Lyon-1 cells. The expression of the TCR-gamma delta/CD3 complex on PEER cells was not affected by introduction of TCR-alpha cDNA. In contrast, introduction of a TCR-alpha cDNA and expression of the TCR-alpha beta/CD3 complex in Lyon-1 cells resulted in the disappearance of the TCR-gamma delta/CD3 complex. These data were confirmed by indirect immunofluorescence, at the protein level and by gene expression analysis. Triggering of the TCR-alpha beta/CD3 complexes by anti-CD3 mAb or anti-TCR mAb resulted in increased internal Ca2+ levels, indicating that these receptors were functional in signal transduction. These results indicate that, besides TCR gene rearrangements, membrane expression of TCR-alpha beta heterodimers may be important in regulating TCR-gamma delta cell surface expression.  相似文献   

7.
8.
The TCR is comprised of two variable chains that confer specificity, called alpha:beta or gamma:delta, physically associated with five different molecules that comprise the complex known as CD3. Antibodies to this complex are very useful, as they react with all T lymphocytes. A rat mAb to mouse CD3 has been prepared. It reacts with 100% of T cells in all mouse strains tested but with no other cell type. It binds to the CD3 epsilon chain. This antibody activates cloned T cell lines and normal T cells, provided suitable accessory cells and signals are present. This antibody detects a determinant similar to but not identical with those detected by two previously reported hamster anti-CD3 epsilon antibodies. This antibody fixes C efficiently, and it is thus useful for depletion of T cells from bulk populations. Activation of T cells by one of the three different anti-CD3 epsilon antibodies was inhibited by the Fab fragment of anti-CD4, similar to the effects of anti-CD4 Fab on two previously reported anti-TCR V region antibodies that bind a CD3 epsilon-associated epitope. This further defines a site involving TCR V regions and CD3 epsilon with which CD4 appears to associate during T cell activation.  相似文献   

9.
Murine CD3+,CD4-,CD8- peripheral T cells, which express various forms of the TCR-gamma delta on their cell surface, have been characterized in terms of their cell-surface phenotype, proliferative and lytic potential, and lymphokine-producing capabilities. Three-color flow cytofluorometric analysis demonstrated that freshly isolated CD3+,CD4-, CD8- TCR-gamma delta lymph node cells were predominantly Thy-1+,CD5dull,IL-2R-,HSA-,B220-, and approximately 70% Ly-6C+ and 70% Pgp-1+. After CD3+,CD4-,CD8-splenocytes were expanded for 7 days in vitro with anti-CD3-epsilon mAb (145-2C11) and IL-2, the majority of the TCR-gamma delta cells expressed B220 and IL-2R, and 10 to 20% were CD8+. In comparison to CD8+ TCR-alpha beta T cells, the population of CD8+ TCR-gamma delta-bearing T cells exhibited reduced levels of CD8, and about 70% of the CD8+ TCR-gamma delta cells did not express Lyt-3 on the cell surface. Functional studies demonstrated that splenic TCR-gamma delta cells proliferated when stimulated with mAb directed against CD3-epsilon, Thy-1, and Ly-6C, but not when incubated with an anti-TCR V beta 8 mAb, consistent with the lack of TCR-alpha beta expression. In addition, activated CD3+,CD4-,CD8- peripheral murine TCR-gamma delta cells were capable of lysing syngeneic FcR-bearing targets in the presence of anti-CD3-epsilon mAb and the NK-sensitive cell line, YAC-1, in the absence of anti-CD3-epsilon mAb. Finally, activated CD3+, CD4-,CD8-,TCR-gamma delta+ splenocytes were also capable of producing IL-2, IL-3, IFN-gamma, and TNF when stimulated in vitro with anti-CD3-epsilon mAb.  相似文献   

10.
11.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

12.
T cell hybridomas were generated from CD3+, CD4-, CD8- splenocytes and fetal thymocytes. V gamma 1-expressing proteins present on these murine TCR-gamma delta hybridomas were identified by using an anti-TCR V gamma 1 peptide serum. This antiserum specifically immunoprecipitated 41-kDa TCR V gamma-C gamma 4 chains and 31-kDa TCR V gamma-C gamma 1/2 chains from distinct heterodimers expressed on the TCR-gamma delta T cell hybridomas. The RNA from a hybridoma with a 31-kDa TCR-gamma chain hybridized with a V gamma 1 probe but failed to hybridize with a V gamma 2 probe. In contrast, the RNA from a hybridoma with a 32-kDa TCR-gamma chain hybridized with a V gamma 2 probe. This 32-kDa TCR-gamma chain was not immunoprecipitated by the anti-V gamma 1 serum. These data were consistent with the conclusion that the 31-kDa protein was the product of a V gamma 1 to C gamma 2 rearrangement, whereas the 32-kDa protein was the product of a V gamma 2 to C gamma 1 rearrangement. Furthermore, Southern analyses confirmed that the 32-kDa protein was the product of a V gamma 1.2-J gamma 2 rearrangement, and all three of the 41-kDa TCR-gamma chains were the results of V gamma 1.1-J gamma 4 rearrangements. This was the first demonstration at the clonal level of TCR-gamma proteins which use members of the V gamma 1 gene family, as well as the C gamma 2 constant region. Additional biochemical analyses of the TCR-gamma and -delta proteins from three independently derived C gamma 4-bearing T cell hybridomas suggested that most of the molecular mass diversity observed in the bulk subpopulation of peripheral C gamma 4-containing heterodimers may be contributed by the TCR-delta chains.  相似文献   

13.
The mononuclear lymphoid cell population in human pregnant uterus mucosa, decidua, from early normal pregnancies was studied phenotypically and functionally. The phenotype was determined in situ by immunohistochemistry, and in isolated decidual mononuclear cell preparations by immunofluorescence and flow cytometry. A mild isolation procedure of gentle mechanical disruption followed by density gradient centrifugation was used. Leukocytes comprised a large part of the decidual tissue. They were present in aggregates mainly situated adjacent to the glandular epithelium. In addition, individual leukocytes were present intraepithelially, as well as scattered between the stromal cells and around vessels and lacunes. Four lymphocyte populations of approximately the same size were identified: TCR gamma delta+/CD56+ cells, TCR gamma delta+/CD56- cells, TCR gamma delta-/CD56+ cells, and TCR alpha beta+/CD8+ cells. TCR gamma delta- expressing cells comprised about 60% of the T cells. They were CD4-/CD8-, and about half of the TCR gamma delta+ cells expressed the memory/activation marker CD45RO. The Kp 43 Ag, earlier described on activated CD56+ and TCR gamma delta+ cells in peripheral blood, was essentially only expressed on the TCR gamma delta-/CD56+ cell population in decidua. At least 50% of the TCR alpha beta+ cells were CD8+. The function(s) of either one of these populations might be to prevent immunologic reactions against the fetus, to protect the uterus from unwanted extensive invasion of trophoblasts, or to protect the uteroplacental unit from infection. Decidual T cells did not respond to stimulation by alloantigens or mitogenic anti-CD3 mAb but responded to the same extent as PBMC to mitogenic lectins. The surface density of the TCR/CD3 complex was low on freshly isolated decidual lymphocytes, but could be up-regulated upon stimulation with PMA/Ionomycin. Local selective down-regulation of surface expression of the TCR/CD3 complex and of activation involving this complex might be one of the mechanisms by which a maternal immunologic reaction against the semiallogeneic fetus is prevented.  相似文献   

14.
We have analyzed the effects of NK cell stimulatory factor/IL-12, on proliferation of PBL and their subsets. IL-12 synergizes with lectins and phorbol diesters to induce proliferation of CD4+ and CD8+ peripheral blood T lymphocytes. In the case of phorbol-diester-induced proliferation, the effect of IL-12 is in part mediated by induced IL-2 production, as suggested by the observation that IL-12 enhances IL-2 production in these cultures and that anti-IL-2 antibodies inhibit proliferation. IL-12 synergizes also with anti-CD3 antibodies and with allogeneic stimulation in MLC in inducing T cell proliferation. IL-12 alone is mitogenic for preactivated T and NK lymphoblasts. This mitogenic effect is observed with similar doses of IL-12 on NK lymphoblasts as well as on CD4+ and CD8+ TCR-alpha beta+ and on TCR-gamma delta+ lymphoblasts. On TCR-alpha beta+ T lymphocytes the effect of IL-12 is always additive to that of IL-2 over a wide dose range. The same effect is observed on highly activated, actively proliferating NK cells. However, on NK and TCR-gamma delta+ lymphoblasts reverting to a resting state after stimulation and on a TCR-gamma delta+ acute leukemia-derived T cell line, IL-12 inhibits significantly the proliferation induced by moderate to high doses (10 to 100 U/ml) of IL-2. This inhibitory effect is, at least in part, indirect, and depends on IL-12-induced production of TNF. Neutralizing anti-TNF antibodies, but not anti-IFN-gamma and anti-transforming growth factor antibodies, restore by more than 70% the inhibition of proliferation induced by IL-12 in these cultures. However, TNF alone cannot mimic the inhibitory effect of IL-12 on the IL-2-induced proliferation of NK and TCR-gamma delta+ lymphoblasts, suggesting the involvement of additional mechanisms. The relevance of these findings for the biology of lymphocyte subsets mediating MHC nonrestricted cytotoxicity is discussed.  相似文献   

15.
A total of 33 human leukemia/lymphoma cell lines were classified into 4 groups with respect to the pattern of cell membrane (sm) expression of the CD3 and T cell receptor (TCR) molecules; (i) smCD3+TCR alpha beta (16 cell lines), (ii) smCD3+TCR beta delta (1 cell line), (iii) smCD3+TCR gamma delta (3 cell lines) amd (iv) smCD3-TCR- (13 cell lines), respectively. Using monoclonal antibodies (MoAbs) specific to CD3 (NU-T3), TCR alpha chain (alpha F1), TCR beta chain (beta F1), and TCR gamma chain (C gamma M1), respectively, cytoplasmic (cy) expression of these molecules was determined by immunofluorescence test. Expression of cyCD3 was present in all cell lines regardless of groups. In group (i), all 16 cell lines expressed both TCR alpha and beta chains. While only TCR beta chain was expressed in group (ii), TCR gamma chain was expressed in all 3 cell lines of group (iii). One (PEER) of the three in group (iii) expressed TCR beta chain as well. In group (iv), we found 8 cell lines with cyTCR alpha expression, 11 cell lines with cyTCR beta expression, and 10 cell lines with cyTCR gamma expression, respectively. For TCR genes, except 1 cell line all cell lines were found to present rearranged C beta gene and its mRNA, including all 3 TCR gamma/delta cell lines of group (iii). One of the TCR alpha beta cell lines exhibited rearranged C delta and J delta genes as well as its mRNA. Two cell lines of the 13 CD3-TCR- of group (iv) exhibited rearranged C delta and J delta and its mRNA. An NK-like activity and IL-2 production were induced in the TCR beta delta and gamma delta cell lines [group (ii) and (iii)] by treatment with PHA and PMA.  相似文献   

16.
Staphylococcal enterotoxins (SE) are known to stimulate a large proportion of T cells. SE bind to MHC-class II molecules on APC and a particular segment of certain TCR V beta and V gamma gene products. Resting human T cells do not express HLA class II Ag and therefore cannot present SE to T cells. Activated human T cells, however, do express HLA-DR, -DP, and -DQ Ag and could consequently serve as APC for SE. As such, local immune responses to SE might be regulated and/or abrogated by SE-mediated T-T cell interactions leading to T cell destruction. We have investigated if such SE-mediated T-T cell interactions can occur in vitro using human cytolytic TCR-alpha beta+ and TCR-gamma delta+ T cell clones. We demonstrate that the TCR-alpha beta+ T cell clones can efficiently present staphylococcal enterotoxin A (SEA) to each other: T cell clones coated with SEA are lysed by SEA-reactive T cell clones but not by a SEA-nonreactive T cell clone. Furthermore, the SEA-reactive TCR-alpha beta+ clones (but not the SEA-nonreactive clone) destruct themselves in the presence of SEA at low concentrations of SEA (less than 0.01 microgram/ml). Also, SEA-coated T cell clones can induce proliferative responses although such responses are much weaker than those induced when B cells are used as stimulator cells. In contrast, the SEA-reactive TCR-gamma delta+ T cell clones are resistant to autokilling in the presence of SEA and they do not lyse SEA-coated TCR-gamma delta+ targets. However, such targets can be lysed by TCR-alpha beta+ effector cells. These results indicate that TCR-gamma delta+ cells are relatively resistant to lysis and that during local nonspecific immune responses triggered by SE, which induces HLA-class II expression by the responding T cells, SE-mediated T-T cell interactions may play a role in the regulation and/or abrogation of these immune responses.  相似文献   

17.
T Saito 《Human cell》1990,3(3):183-192
T cell receptor complex is composed of at least 7 different polypeptides and is one of the most sophisticated receptor. There are two types of T cell receptor (TCR); alpha beta and gamma delta, both of which are composed of a heterodimer and associated with invariant CD3 complexes on the cell surface. T cells expressing alpha beta dimer recognize antigen-peptides in the context of self-MHC molecules, whereas the specificity and function of gamma delta T cells are largely unknown. Gene organization of alpha beta and gamma delta indicates the difference of mechanism to generate diversity. Whereas alpha and beta genes have a large number of V genes, those of gamma and delta genes are limited. However, especially for delta gene, the repertoire is largely produced by junctional diversity. There are increasing data showing new TCR heterodimers; such as beta delta heterodimer in human, beta homodimer in mouse and unknown new heterodimer in chicken, which are expressed on the cell surface in the association with CD3 complex. The characterization of these new receptor dimers and the function of cells expressing these receptors have to be determined. Among CD3 complex, zeta and eta chains are most important for signal transduction after antigen-recognition by TCR. eta gene is recently cloned and now found to be produced by an alternative splicing of a common gene with zeta chains gene. Tyrosine++ phosphorylation of zeta chain seems to be one of the earliest events of T cell activation. Since fyn, one of src oncogene family possessing tyrosine++ kinase function, is co-precipitated with TCR-CD3 complex, fyn seems to be involved in early phosphorylation for T cell activation. Positive and negative selection of thymocytes has been shown to occur via TCR using TCR-transgenic mice model. Molecular mechanism of the selection should be determined.  相似文献   

18.
The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication of a single gene. Here, we provide several lines of evidence which indicate that in human and murine T cells which expressed both the CD3-gamma and CD3-delta chains on their surface, the TCR/CD3 complex consisted of a mixture of alpha beta gamma epsilon zeta and alpha beta delta epsilon zeta complexes rather than a single alpha beta gamma delta epsilon zeta complex. First, a CD3-gamma specific antibody failed to co-immunoprecipitate CD3-delta and conversely, several CD3-delta specific antibodies did not coprecipitate CD3-gamma. Secondly, analysis of a panel of human and murine T cell lines demonstrated that CD3-gamma and CD3-delta were expressed at highly variable ratios on their surface. This suggested that these chains were not expressed as a single complex. Thirdly, CD3-gamma and CD3-delta competed for binding to CD3-epsilon in transfected COS cells, suggesting that CD3-gamma and CD3-delta formed mutually exclusive complexes. The existence of these two forms of TCR/CD3 complexes could have important implications in the understanding of T cell receptor function and its role in T cell development.  相似文献   

19.
Human T lymphocytes express either alpha/beta- or gamma/delta-TCR in association with the CD3 complex. We have isolated a mAb, delta TCS1, that immunoprecipitated the gamma/delta-TCR heterodimer from cell lysates of Peer and Molt-13 leukemia cell lines. After dissociation of the gamma- and delta-chains of TCR by treatment with SDS, delta TCS1 specifically immunoprecipitated the delta-chain. This antibody bound to the surface of other gamma/delta-positive T cell lines and clones and was able to stimulate the proliferation of a minor cell population (0.9 to 4.0%) of resting human PBL. Upon binding to gamma/delta-TCR-bearing Molt-13 cells and PBL, delta TCS1 elicited a fura-2 Caa+ signal indicating that the gamma/delta-receptor is functionally similar to the alpha/beta-heterodimer. These data indicate that the delta TCS1 antibody recognizes an epitope on TCR delta-chain and its mitogenic activity should be useful in characterizing the functional properties of human gamma/delta-positive T lymphocytes.  相似文献   

20.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号