首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean and flax were grown in nutrient solutions containing high and low levels of molybdenum and vanadium, in combination with toxic (10–25 p.p.m.) and non-toxic (1 p.p.m.) manganese. Molybdenum (20 and to a less extent 10 p.p.m.) intensified the chlorosis induced by manganese excess, though these concentrations were harmless in the presence of 1 p.p.m. Mn. Vanadium (= 1.0, 5 and 10 p.p.m. Mo) counteracted some of the symptoms of manganese toxicity, but the two higher rates were harmful to growth irrespective of the manganese supply. Toxic concentrations of vanadium at first deepened the green colour of the shoot, though apical iron-deficiency chlorosis was generally induced later. Low molybdenum (0.1 p.p.m.) or equivalent vanadium had no influence on growth or iron nutrition at either level of manganese. Visual differences were corroborated by changes in the nitrogen, phosphorus and iron contents of the plants. There was no evidence of replaceability of molybdenum by vanadium.
Oats were grown in nutrient solutions containing various combinations of manganese (nil–400 p.p.m.) and molybdenum (nil–20 p.p.m.). The appearance of manganese-deficiency symptoms was not affected by the quantity of molybdenum provided, and the manganese and molybdenum contents of the leaves were mutually independent of the quantity of each element supplied.  相似文献   

2.
TRACE-ELEMENT TOXICITIES IN OAT PLANTS   总被引:4,自引:0,他引:4  
Excessive amounts of nickel, cobalt, chromium, copper, zinc, manganese, molybdenum and aluminium in nutrient solutions supplied to oat plants in sand culture produce ( a ) chlorosis and ( b ) other symptoms specific to the element involved. The specific symptoms are distinct for each metal, although those of cobalt and nickel might be confused.
The toxic effects of nickel, cobalt, copper, zinc, manganese and molybdenum are associated with high concentrations of the element in the leaf tissue, but this is not always so with chromium and aluminium.
The toxic effects of nickel, chromium, copper and molybdenum are associated with a reduced nitrogen content of the plant. Nickel, cobalt, chromium, zinc and manganese increase the concentration of phosphorus in the tissue whilst aluminium decreases it, probably to a deficiency level.
Aluminium reduces the intensity of toxic symptoms produced by nickel—probably by reducing the uptake of nickel and phosphorus. Copper effectively reduces the leaf necrosis produced by nickel, but not the nickel content of the leaf tissue; it is suggested that one factor in nickel toxicity may be inhibition of one or more functions of copper. The other elements slightly increase chlorosis and some increase necrosis.
The order of activitjl of the elements in producing chlorosis is found to be Ni>Cu>Co>Cr>Zn>Mo>Mn. This order, which is related to that giving yield reduction and is similar to the order of stability of metal complexes, is discussed in relation to induced iron deficiency.  相似文献   

3.
Kassem  My.A.  Meksem  K.  Kang  C.H.  Njiti  V.N.  Kilo  V.  Wood  A.J.  Lightfoot  D.A. 《Plant and Soil》2004,260(1-2):197-204
Resistance to manganese toxicity is associated with some soybean (Glycine max) cultivars grown on acidic soils or in hydroponics. Previously random amplified polymorphic DNA (RAPD) markers had seemed to identify 4 quantitative trait loci (QTL), regions that might underlie resistance to manganese toxicity in a recombinant inbred line (RIL) population derived from ‘Essex’ x ‘Forrest’. Our objective was to identify microsatellite markers linked to these, or additional, QTL for resistance to manganese toxicity in a separate assay. Two hundred and forty microsatellite markers and 100 RILs were used to construct a map. The response of five plants per genotype to manganese was measured by leaf chlorosis (scored from 0–5) and root necrosis (scored from 0–5) from 7–28 days after treatment with 125 μM of manganese in hydroponics. The experiment was repeated. ANOVA and MapMaker/QTL were used to identify regions underlying the responses. Three genomic regions on different linkage groups were found to contain QTL for resistance to necrosis during manganese toxicity. The regions located on linkage groups C2 (BARC_S att291),I(BARC_S att239)andG(OP_O EO2)wereeachsignificantlyassociated(P<0.005, R 2=20%) with root necrosis at 7 days after treatment. The regions all derived the beneficial allele from Essex. One of the previously identified RAPD associated root necrosis QTL was identified in this new study. However, no QTL for leaf chlorosis were detected (P<0.005) and none of the RAPD identified leaf chlorosis QTL could be identified. We conclude that root and leaf resistance to manganese toxicity are environmentally sensitive quantitative traits determined by separate loci of different number and magnitude of effect.  相似文献   

4.
Soybean nitrate reductase activity influenced by manganese nutrition   总被引:1,自引:0,他引:1  
Nitrate assimilation by soybeans [Glycine max (L.) Merrill cvv.Lee and Bragg] was investigated in plants grown in solutionculture at manganese concentrations of 0, 1.8 and 275 µMand at day-night temperatures of 33–28° and 22–17°C.Manganese deficiency occurred in plants of both cultivars grownat 0 µM Mn; under these conditions, leaf nitrate concentrationincreased in both cultivars and nitrate reductase activity invivo but not in vitro was reduced. High solution Mn (275 µM)produced symptoms of manganese toxicity and reduced nitratereductase activity of both cultivars in vitro but only of Bragggrown at 22–17°C in vivo. A significant interactionbetween cultivars and solution Mn concentration was found forin vitro assays for plants grown at both temperatures; thisinteraction occurred in the in vivo assays for plants grownat 22–17° only. (Received March 20, 1980; )  相似文献   

5.
Wheat (Triticum sativum L. cv. Nisu) grown in 0·5 Hoaglandssolution containing sub-toxic concentrations of S-ethyl dipropylthiocarbamate(EPTQ (0,0·0625,0·125,0·25, and 0·5p.p.m.w.) were exposed to 14C-ring labelled-2-chloro-4-ethylamino-6-isopropylamino-s-triazine(atrazine). Total 14C-atrazine absorption was increased to 182per cent in wheat treated with 0•5 p.p.m.w. EPTC when comparedto the EPTC untreated wheat. Detoxification and metabolism ofEPTC were not appreciably altered by EPTC pretreatment. Thisresulted in an increased atrazine content in the wheat leavespretreated with 0·5 p.p.m.w. EPTC that amounted to 370per cent of the unchanged atrazine present in the leaves ofEPTC untreated wheat.  相似文献   

6.
Ammonium molybdate supplying 20 or 40 p.p.m. Mo prevented chlorosis caused by low iron supply in young flax plants, but sodium molybdate was effective only at the higher concentration. Temporary darkening of the green colour of the shoots was also produced by 40 p.p.m. Mo in iron-deficient soybean and pea plants, but was soon followed by more severe chlorosis. Symptoms of molybdenum toxicity always developed when 40 p.p.m. Mo were given, whether or not the intensity of chlorosis was reduced. With an increase in iron supply, a reduction in molybdenum toxicity symptoms was confirmed in soybean and peas. In flax the higher level of iron eventually proved excessive unless it was combined with 40 p.p.m. Mo. High molybdenum thus seemed able to counteract both iron deficiency and toxicity in this plant.
High iron reduced the molybdenum content (p.p.m./d.m.) of both shoot and root in soybean, peas and also in flax provided the iron was not excessive. High molybdenum usually reduced the iron content of the shoot, but markedly increased it in the root. Molybdenum-induced chlorosis could thus be partly attributed to inhibition in iron translocation, but the beneficial effect of high molybdenum or high iron on colour was not obviously correlated with the analytical data.  相似文献   

7.
R. T. Besford 《Plant and Soil》1978,50(1-3):427-432
Summary Tomato plants (Lycopersicon esculentum cv. Amberley Cross) were grown in sand culture and were fed with four concentrations of potassium nitrate in combination with two levels of sodium nitrate. After six weeks the plants were scored for the presence and absence of a symptom of potassium deficiency, namely, marginal chlorosis and/or necrosis in the young, fully-expanded leaves. These leaves were also analysed for K and Na. Marginal chlorosis and/or necrosis occurred in plants given a nutrient solution containing 0.5 meq K/I or less and supplied with either of the sodium nitrate levels. However, the symptoms occurred more frequently in plants receiving the lower level of sodium nitrate. The laminae on plants receiving the lower concentration of sodium nitrate had a 50 per cent incidence of chlorisis and/or necrosis when the tissue potassium content was 0.74 per cent of the dry wt, while those laminae on plants receiving the higher level did not show a 50 per cent incidence until their potassium fell to 0.64 per cent of the dry wt.  相似文献   

8.
The influence of varying levels of iron and substrate pH on the uptake of nickel and the intensity of toxicity symptoms in oat plants have been investigated using sand-and water-culture techniques.
Nickel-toxicity symptoms (both necrosis and chlorosis) are less severe when the concentration of iron in the nutrient solution is high. The reduction in degree of necrosis is related to a reduced content of nickel in the leaf blades, whilst that of chlorosis is related to the Ni/Fe ratio in the leaf blades—an internal antagonism being indicated in the latter case.
A reciprocal relationship exists between the nickel and iron contents of the leaf blades; the nickel content is materially reduced by high concentrations of iron in the nutrient solution, and the iron content by nickel, the former being the more pronounced effect.
Uptake of nickel increases with increasing pH for a constant iron level in the substrate, although the degree of necrotic symptoms is similar over pH range 4–7. Iron uptake is reduced by both nickel and increasing pH and results in chlorosis at pH values of 5·5 and above.
For a constant level of iron supply the phosphate content of the stem extracts is higher the greater the degree of nickel toxicity; the phosphorus status of the plant may be a factor in producing nickel toxicity but if so, it has to be considered in relation to other factors.  相似文献   

9.
RUCK  H. C.; BOLAS  B. D. 《Annals of botany》1954,18(3):267-297
The effect of manganese on carbon assimilation, respiration,and translocation has been studied using isolated rooted potatoleaves and small potato plants. Methods are described for therooting and culture of the leaves and plants. It was found thatnormal potato leaves rooted readily when treated with -naphtha-leneaceticacid (2 p.p.m.), but that very few of the manganese-deficientleaves produced roots, the critical level being about 15 p.p.m.manganese on a dry weight basis. The growth of isolated deficientleaves was also much less than that of control leaves, but inno case did characteristic manganese-deficiency symptoms develop,although the manganese level had fallen below that of leaveswhich showed symptoms when attached to the plant. A marked differencein net assimilation rate was found between leaves which hada high or low manganese content at the time of rooting. Theaddition of manganese after rooting to low manganese leavesdid not, however, cause an increase in assimilation rate, althoughthe manganese content of the leaves had been raised to thatof the control leaves. Manganese was shown to have only a smalleffect on respiration, higher respiration rate being consistentlyassociated with a higher manganese content; the addition ofmanganese to ‘deficient’ leaves did not cause anyincrease in respiration. No effect of manganese on translocationwas detected.  相似文献   

10.
ZIV  MEIRA; ZAMSKI  E. 《Annals of botany》1975,39(3):579-583
Peanut gynophore explants cultured in vitro on a defined mediumshow a positive geotropic response in both light and dark whenplanted either horizontally, or vertically with the tip pointingupwards. The growth following the initial curvature dependedon age of the gynophores and on the levels of growth substancesin the medium. In the dark and in presence of 0·01–0·1p.p.m. kinetin, naphthalene acetic acid at concentrations of0·1 p.p.m. and lower promoted gynophore elongation. Athigher concentrations elongation was promoted to a lesser extentin younger explants, caused enlargement of the ovary and formationof pods. Young explants generally elongated more than olderones and pod formation took place inside the medium, while inolder ones it took place above the medium. In the light, theinitial positive geotropic response was followed by elongationbut without any enlargement of the ovary. Decapitation of gynophores1·5–2·0 mm below their tip, removing theovary but leaving most of the intercalary meristem, had no effecton the geotropic response and elongation. The initial geotropicresponse and elongations of explants in vitro was not dependenton the presence of the ovary but on the meristem proximal toit. Changes in growth substances balance during gynophore developmentseem to affect geotropic response, elongation and pod formationin the peanut.  相似文献   

11.
Summary The effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L. var. ‘Red Kidney’) grown in water culture was studied at different levels of manganese supply. Without silicon, growth depression and toxicity symptoms occurred already at 5 × 10−4 mM Mn in the nutrient solution. After addition of Aerosil (0.75 ppm Si), the plants tolerated 5 × 10−3 mM Mn and, at a higher silicon supply of 40 ppm, as much as 10−2 mM Mn in the nutrient solution without any growth depression. This increase in manganese tolerance was not caused by a depressing effect of silicon on uptake or translocation of manganese but rather by an increase in the manganese tolerance of the leaf tissue. In absence of silicon, 100 ppm Mn was already toxic for the leaf tissue, whereas with a supply of 40 ppm Si, this ‘critical level’ in the leaves was increased to more than 1000 ppm Mn. At lower manganese levels in the leaf tissue, a molar ratio Si/Mn of 6 within the tissue was sufficient to prevent manganese toxicity. Above 1000 ppm Mn, however, even a much wider Si/Mn ratio (> 20) could not prevent growth depression by manganese toxicity. With54Mn and autoradiographic studies, it could be demonstrated that, in absence of silicon, even at optimal manganese supply (10−4 mM), the distribution of manganese within the leaf blades was inhomogeneous and characterized by spot-like accumulations. In presence of silicon, however, the manganese distribution was homogeneous in the lower concentration range of manganese and still fairly homogeneous in the high concentration range. This effect of silicon on manganese distribution on the tissue level was also reflected on the cellular level. In the presence of silicon, a higher proportion of the leaf manganese could be found in the press sap,i.e., had been transported into the vacuoles, than in the absence of silicon. The increase in manganese tolerance of bean leaves by silicon therefore seems to be primarily caused by the prevention of local manganese accumulation within the leaf tissue which leads to local disorders of the metabolism and, correspondingly, growth depression.  相似文献   

12.
Effect of low (5 mmol·dm−3) and high (10 or 20 mmol·dm−3) doses of 1.10-phenanthroline (Phe), a photodynamic herbicide, on the development of chloroplasts in etiolated and subsequently illuminated maize seedlings and on the structure of already developed chloroplasts of green maize seedlings was examined. Etiolated and then irradiated plants were resistant to 5 mmol·dm−3 of Phe with respect to morphology, however Phe caused inhibition of greening and of grana formation. Higher Phe concentrations followed by exposure to light caused not only total inhibition of greening but also dilation of thylakoids, swelling of chloroplasts, and finally total destruction of chloroplast structure. Application of Phe in the same concentrations to green plants revealed that they were resistant to low dose of Phe with respect to morphology and structure of chloroplasts, however 10 and 20 mmol·dm−3 Phe and illumination caused the loss of turgor of treated plants and other photooxidative damages seen at the ultrastructural level. We concluded that maize, as representant of monocotyledonous plants, is resistant to low (5 mmol·dm−3) Phe concentration. Higher (10 or 20 mmol·dm−3) concentrations, used to determine the site of damage and mode of action of Phe on the level of cell revealed that action of photodynamic herbicides is based on standard photoinhibition mechanism and also probably on their chelating properties.  相似文献   

13.
ROBSON  M. J.; DEACON  M. J. 《Annals of botany》1978,42(5):1199-1213
Small communities of S24 ryegrass were grown under supplementarylights in a glasshouse at 20°C, and abundantly suppliedwith a complete nutrient solution containing 300 p.p.m. of nitrogen,until they had a leaf area index of 5 and were fully light intercepting.Half were then given a solution containing only 3 p.p.m. ofnitrogen (LN) while the rest were kept at 300 p.p.m. (HN). The HN plants subsequently produced marginally more leaves,which elongated more rapidly to a greater final length and area,on a third more tillers than did the LN plants. Leaves 5, 6 and 7 on the main stem were examined in more detail.In both the HN and the LN plants the d. wts of both laminaeand sheaths fell by about 30 per cent between their full expansionand death. Changes in acid extractable carbohydrate (AEC) verylargely accounted for the changes in leaf weight, particularlyin the LN plants. With increased nitrogen deficiency, AEC contentsrose from less than 10 per cent for leaf 5 to peak values of20 and 45 per cent for the lamina and sheath of leaf 7, as against10 and 15 per cent in the nitrogen sufficient leaves. Conversely,the nitrogen content of the deficient plants fell from valuesof 5·8 and 4·8 per cent for the lamina and sheathof leaf 5 to 3·0 and 1·2 per cent for leaf 7.It was striking that while the HN leaves lost nitrogen onlywhen they aged and died, the LN leaves started losing nitrogenbefore they had reached full expansion—70 per cent ofthe N initially present was remobilized by the time the leaveswere dead. The significance of these findinp to estimates of leaf deathand total biomass production in the field, and to our understandingof the achievement of ceiling yield, are discussed. Luliwn perenne, S24 ryegrass, carbohydrate content, nitrogen content, nitrogen deficiency  相似文献   

14.
The morphogenic response of thin cell layers (TCLs) from vegetativetobacco (Nicotiana tabacum L.) plants can be directed very preciselyby varying the concentrations of benzyladenine (BA) and -naphthaleneacetic acid (NAA) in the culture medium. Medium containing 1·6µM BA and 0·5 µM NAA was optimal for shootformation, concentrations of 0·5 µM BA and 1·6µM NAA were optimal for the induction of shoots and rootson the same explant, whereas concentrations of NAA higher than16 µM resulted in callus proliferation only. Polarityin the distribution of the shoot buds was observed, i.e. a switchfrom basal to apical shoot formation occurred with increasingNAA concentrations, suggesting basipetal transport of NAA. Histologicalexamination of TCLs on shoot induction medium revealed thatfirst cell divisions occurred within 2 d in cortical cells whichwere directly in contact with the medium along the longitudinalcut surface, and after 2 d in subepidermal cells along the lateraledges of the explants. Individual lateral buds originated fromone subepidermal and one or more epidermal cells, while apicalbuds originated from single subepidermal or cortical cells locateddirectly at the apical end of the explant. After culture ofTCLs for 2-3 d on root/shoot induction medium cells in the regeneration-competentsubepidermis elongated, while on callus induction medium subepidermalcells elongated and dedifferentiated. The regeneration systemas described in this study will be used to identify cells competentfor regeneration as well as for transformation.Copyright 1994,1999 Academic Press Nicotiana tabacum L., tobacco, thin cell layer explants, cell competence, shoot development, polarity  相似文献   

15.
Background and Aims: Plant growth responses to the rare earth elements lanthanum(La) and cerium (Ce) have been reported, but little is knownabout the effects of these two elements on plant mineral nutrition. Methods: Corn (Zea mays ‘Hycorn 82’) and mungbean (Vignaradiata ‘Berken’) were grown in continuous flowingnutrient solutions containing 0, 0·2, 1·0 and5·0 µM La or Ce. At harvest plants were dividedinto roots and shoots, dried, weighed and analysed for macro-and micronutrients, as well as for La and Ce. Key Results: La and Ce did not increase the growth of corn or mungbean. Thedry weight of corn shoots was decreased by 32 % in the presenceof 5·0 µM Ce; the other La and Ce concentrationshad no effect. La and Ce concentrations of 0·9 and 5·0µM decreased the shoot dry weight of mungbean by 75 or95 %, the two elements having closely similar effects. Decreasesin the uptake of Ca, Na, Zn and Mn by corn were observed withincreases in solution La and Ce. For mungbean, the uptake ratesof all measured elements decreased with increases in solutionLa and Ce. The concentrations of La and Ce in the roots of bothspecies were higher than in the shoots and increased stronglywith increasing concentrations of La or Ce in solution. TheLa and Ce concentrations in mungbean shoots were always higherthan in corn shoots. Conclusions: La and Ce did not enhance the growth of corn or mungbean, butdecreased the growth, root function and consequently the nutritionalstatus of mungbean at concentrations >0·2 µMin solution. It is concluded that if La or Ce have positiveeffects on corn and mungbean growth, they can only occur atsolution concentrations below 0·2 µM.  相似文献   

16.
WOLFE  M. 《Annals of botany》1954,18(3):299-308
The effect of molybdenum concentration upon the growth of Anabaenacylindrica is studied. Within the range of molybdenum concentrationthat it was found possible to achieve by the methods described,the element does not affect growth on ammonium chloride, butit is required for healthy growth on nitrate or gaseous nitrogen,the optimal concentrations being about 0·075 and 0·20p.p.m., respectively. Molybdenum appears to be unnecessary fornitrate uptake.  相似文献   

17.
The effects of the metal ions manganese and cobalt on force production by the abdominal superficial flexor muscle of the Norway lobster, Nephrops norvegicus, have been studied in response to both neuronal stimulation and electrical field stimulation applied to an isolated neuromuscular preparation, and by selectively blocking synaptic transmission with ivermectin. In response to both forms of stimulation, low concentrations of manganese added to the standard N. norvegicus saline increased the contractile force produced by the muscle, whereas higher concentrations of manganese inhibited both responses in a dose-dependent manner, until force was completely abolished at concentrations above 2.9 mM manganese. Cobalt ions produced similar effects, and no significant difference was found between the concentration of the two ions at 50% force inhibition (Km) or between the two stimulation methods (manganese: 1.22 mM; cobalt: 1.29 mM, P = 0.86). This suggests that they have a similar mode of action, and a postsynaptic site of inhibition. These Km values are considerably higher than the concentrations of these ions known to accumulate in the haemolymph of N. norvegicus under eutrophic conditions, and it therefore seems unlikely that accumulations of manganese or cobalt ions under such conditions would cause any significant inhibition of muscle contraction force. Accepted: 28 April 1999  相似文献   

18.
The growth rate of hydroponically grown wheat roots was reducedby mannitol solutions of various osmotic pressures. For example,following 24 h exposure to 0·96 MPa mannitol root elongationwas reduced from 1· mm h–1 to 0·1 mm h–1 Mature cell length was reduced from 290 µm in unstressedroots to 100 µm in 0·96 MPa mannitol. This indicatesa reduction in cell production rate from about 4 per h in theunstressed roots to 1 per h in the highest stress treatment. The growing zone extended over the apical 4·5 mm in unstressedroots but became shorter as growth ceased in the proximal regionsat higher levels of osmotic stress. The turgor pressure along the apical 5·0 mm of unstressedroots was between 0·5 and 0·6 MPa but declinedto 0·41 MPa over the next 50 mm. Following 24 h in 0·48(200 mol m–3) or 0·72 MPa (300 mol m) mannitol,turgor along the apical 50 mm was indistinguishable from thatof unstressed roots but turgor declined more steeply in theregion 5·10 mm from the tip. At the highest level ofstress (0·96 MPa or 400 mol m–3 mannitol) turgordeclined steeply within the apical 20 mm. Key words: Growth, turgor pressure, wall rheology, osmotic stress, osmotic adjustment  相似文献   

19.
Summary The uptake and distribution of iron and manganese were studied in a manganese-sensitive soybean cultivar (‘Bragg’) grown over a range of supply levels of these nutrients in solution culture. At high (90 and 275 μM) manganese levels, increasing the iron concentration in solution from 2 to 100 μM partially overcame the effects of manganese toxicity. Interactions between manganese and iron occurred for dry matter yields, rate of Mn absorption by the roots, and the proportions of manganese and iron transported to the tops. No interaction was observed for the rate of root absorption of iron. The percentage distribution of manganese in the plant top increased with increasing iron, despite a reduced rate of Mn uptake. On the other hand, iron uptake was independent of solution Mn concentration and increased with increasing solution Fe. Also more iron was retained in the roots at high Mn and/or Fe levels in solution. Concentrations of manganese and iron in roots, stems and individual leaves were affected independently by the manganese and iron supplyi.e. without any interaction occurring between the two elements. In general, the concentration in a plant part was related directly to the solution concentration. Symptoms resembling iron deficiency correlated poorly with leaf Fe concentrations whereas high levels of manganese were found in leaves displaying Mn toxicity symptoms.  相似文献   

20.
Moisture stress and method of inoculation greatly affected thenumber and distribution of infected root hairs and nodules ofyoung seedlings of Trifolium subterraneum. A reduction of soilmoisture from 5·5 to 3·5% (–0·36to –3·6 x 105 Pa) significantly decreased the numberof infection threads and completely inhibited nodulation, althoughthe number of rhizobia in the rhizosphere was unaffected. Atlow soil moisture levels the root hairs were abnormally shortand swollen. Infection and nodulation were little affected between5·5 and 9·5% moisture (–0·36 to –0·089x 105 Pa). Distribution of infected root hairs depended on the initialplacement of the inoculum; with the inoculum mixed evenly throughthe soil, infection threads occurred at discrete foci alongthe root. With seedlings inoculated at planting, infection threadswere restricted to the top 1–2 cm of root, even at thehighest soil moisture tested. Watering increased the number of infections in plants grownat 3·5% moisture; nodules were formed at a rate equivalentto non-stressed plants. Watering also enabled movement of theseedling-borne inocula; new infections were formed along theroot surface bearing mature root hairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号