首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reverse ChIP:研究DNA-蛋白质相互作用的新方法   总被引:1,自引:0,他引:1  
反向染色质免疫共沉淀技术(reverse chromatin immunoprecipitation assay,Reverse ChIP)是一种在体内状态下分析DNA-蛋白质相互作用的新方法.它用特异的核酸探针捕获靶DNA片段及与其相结合的蛋白质,蛋白质用质谱仪检测,以达到确定靶DNA位点全部相关蛋白质的目的.其可对靶DNA位点相关蛋白质进行全面、系统地鉴定,特别是寻找已知DNA元件相应的调节蛋白.在发现、鉴定靶DNA位点相关蛋白质和研究DNA-蛋白质相互作用中有重要应用价值.  相似文献   

2.
3.
The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity. Production of the antibodies is time-consuming and costly, and it is not easy to produce ChIP-grade antibodies. In this study, we applied a HaloTag7-based chromatin affinity purification system to isolate centromeric DNA sequences in tobacco. This system required no specific antibody, and made it possible to apply a highly stringent wash to remove contaminated DNA. As a result, we succeeded in isolating five tandem repetitive DNA sequences in addition to the centromeric retrotransposons that were previously identified by ChIP. Three of the tandem repeats were centromere-specific sequences located on different chromosomes. These results confirm the validity of the HaloTag7-based chromatin affinity purification system as an alternative method to ChIP for isolating unknown centromeric DNA sequences. The discovery of more than two chromosome-specific centromeric DNA sequences indicates the mosaic structure of tobacco centromeres.  相似文献   

4.
Fast chromatin immunoprecipitation assay   总被引:6,自引:1,他引:5  
Chromatin immunoprecipitation (ChIP) is a widely used method to explore in vivo interactions between proteins and DNA. The ChIP assay takes several days to complete, involves several tube transfers and uses either phenol–chlorophorm or spin columns to purify DNA. The traditional ChIP method becomes a challenge when handling multiple samples. We have developed an efficient and rapid Chelex resin-based ChIP procedure that dramatically reduces time of the assay and uses only a single tube to isolate PCR-ready DNA. This method greatly facilitates the probing of chromatin changes over many time points with several antibodies in one experiment.  相似文献   

5.
6.
7.
Genome-scale ChIP-chip analysis using 10,000 human cells   总被引:2,自引:0,他引:2  
  相似文献   

8.
The Current State of Chromatin Immunoprecipitation   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
王泓力  焦雨铃 《植物学报》2020,55(4):475-480
染色质免疫共沉淀(ChIP)技术是一种检测蛋白质与DNA结合的实验技术。该方法可以先进行样品交联, 然后将蛋白质与DNA复合物进行随机DNA切断, 再借助免疫学方法特异性富集与目的蛋白相结合的DNA片段, 从而检测转录因子等目的蛋白质与DNA的结合情况, 鉴定基因启动子或其它DNA结合位点。该方法同时也可应用于研究基因组特定位点的组蛋白修饰情况。该文介绍了依赖交联固定的常规免疫共沉淀(X-ChIP), 以及适用于103细胞级别微量实验材料的基于微球菌核酸酶非交联免疫共沉淀(ULI-NChIP)具体操作过程和注意事项。  相似文献   

11.
12.
The MCM proteins participate in an orderly association, beginning with the origin recognition complex, that culminates in the initiation of chromosomal DNA replication. Among these, MCM proteins 4, 6, and 7 constitute a subcomplex that reportedly possesses DNA helicase activity. Little is known about DNA sequences initially bound by these MCM proteins or about their cell cycle distribution in the chromatin. We have determined the locations of certain MCM and associated proteins by chromatin immunoprecipitation (ChIP) in a zone of initiation of DNA replication upstream of the c-MYC gene in the HeLa cell cycle. MCM7 and its clamp-loading partner Cdc6 are highly specifically colocalized by ChIP and re-ChIP in G(1) and early S on a 198-bp segment located near the center of the initiation zone. ChIP and Re-ChIP colocalizes MCM7 and ORC1 to the same segment specifically in late G(1). MCM proteins 6 and 7 can be coimmunoprecipitated throughout the cell cycle, whereas MCM4 is reduced in the complex in late S and G(2), reappearing upon mitosis. MCM7 is not visualized by immunohistochemistry on metaphase chromosomes. MCM7 is recruited to multiple sites in chromatin in S and G(2), at which time it is not detected with ORC1. The rate of dissemination is surprisingly slow and is unlikely to be simply attributed to progression with replication forks. Results indicate sequence-specific loading of MCM proteins onto DNA in late G(1) followed by a recruitment to multiple sites in chromatin subsequent to replication.  相似文献   

13.
Chromatin immunoprecipitation (ChIP) is routinely used to examine epigenetic modification of histones at specific genomic locations. However, covalent modifications of histone tails can serve as docking sites for chromatin regulatory factors. As such, association of these regulatory factors with chromatin could cause steric hindrance for antibody recognition, resulting in an underestimation of the relative enrichment of a given histone modification at specific loci. To overcome this problem, we have developed a native ChIP protocol to study covalent modification of histones that takes advantage of hydroxyapatite (HAP) chromatography to wash away chromatin-associated proteins before the immunoprecipitation of nucleosomes. This fast and simple procedure consists of five steps: nuclei isolation from cultured cells; fragmentation of chromatin using MNase; purification of nucleosomes using HAP; immunoprecipitation of modified nucleosomes; and qPCR analysis of DNA associated with modified histones. Nucleosomes prepared in this manner are free of contaminating proteins and permit an accurate evaluation of relative abundance of different covalent histone modifications at specific genomic loci. Completion of this protocol requires approximately 1.5 d.  相似文献   

14.
15.
AGAMOUS-like-15 (AGL15) is a member of the MADS-domain family of DNA-binding regulatory factors that accumulates preferentially in tissue developing in an embryonic mode. To better understand how AGL15 functions, we developed a chromatin immunoprecipitation (ChIP) approach to isolate genes regulated directly by AGL15. ChIP allows purification of in vivo protein-DNA complexes. The co-purified DNA is recovered and used to isolate the putatively regulated gene. Several tests must be performed to show that the putative downstream target gene is truly regulated by the DNA-binding protein. The DNA-binding regulatory protein must interact with cis regulatory elements. The downstream gene expression pattern should respond to the level of the trans-acting regulatory factor. The cis element should be able to confer regulation in response to the trans-acting factor. We describe, in this report, our ChIP protocol, and discuss in detail, tests to confirm regulation by AGL15 for two targets identified by ChIP. These targets are referred to as Downstream Target of AGL15 (DTA1 and DTA2). Expression of DTA1, which encodes a protein with high similarity to GA-2 oxidase-like proteins, is induced by AGL15. DTA2 encodes a novel protein and expression of this target is repressed by AGL15.  相似文献   

16.
1. Changes in circular dichroism (CD) spectra and thermal melting profiles of guinea pigliver DNA reassociated with histones and/or nonhistone proteins from the cerebral of liver chromatin are described. 2. In the DNA-histone complex, positive ellipiticity in the CD spectrum at 260-300 nm is progressively lod by a red-shift of the crossover point at around 260 nm. DNA in this complex is thermally stabilised to a considerable extent, but not to such a full extent as is shown with DNA in native chromatin. 3. DNA-nonhistone complex in 0.14 M NaCl is, in contrast to DNA-histone complex, not precipitable by centrifugation at 20 000 X g. DNA in this complex shows only a slight reduction in ellipticity at 260-300 nm, and a very weak thermal stabilisation. 4. Characteristics in the CD spectrum of the native chromatin are most satisfactorily reproduced in the DNA-histone-nonhistone complex. These include a large decrease in ellipticity at 260-300 nm, a red-shift of the crossover point at around 260 nm, and a slight negative band at around 305 nm. Also, DNA in this complex is thermally stabilised to the extent comparable with DNA in the native chromatin. 5. Addition of nonhistone proteins to the preformed DNA-histone complex in 3 M urea renders a half of the complex, named DNA-histone(-nonhistone), unprecipitable upon centrifugation at 20 000 X g in 0.14 M NaCl. CD spectrum and thermal melting profile of the precipitable DNA-histone(-nonhistone) complex are similar to those of the DNA-histone-nonhistone complex, while in the unprecipitable DNA-histone(-nonhistone) comples, the ellipticity at 260-300 nm is significantly elevated and the highest melting transition (at 80 degrees C) is lacking. 6. The CD spectrum of native cerebral chromatin closely resembles that of unprecipitable DNA-histone(-nonhistone) complex, while in liver chromatin, the spec.trum is an intermediate between those of the unprecipitable and pn of chromatin by nonhistone proteins. Cerebral nonhistone proteins bind to DNA and to the DNA-histone complex more extensively than liver nonhistone proteins. 7. It is concluded that, although the basic conformation of DNA in native chromatin is determined largely by histones, nonhistone proteins also play an individual role. There is also an indication that nonhistone proteins exert an organ-specific modification of chromatin superstructure.  相似文献   

17.
18.
The formation of protein aggregates (foci) at sites of DNA double-strand breaks (DSBs) is mainly studied by immunostaining and is hence limited by the low resolution of light microscopy and the availability of appropriate and selective antibodies. Here, we describe a system using enzymatic creation of site-specific DNA DSBs within the human genome combined with chromatin immunoprecipitation (ChIP) that enables molecular probing of a DSB. Following induction of the I-PpoI enzyme and generation of DSBs, cellular DNA and proteins are crosslinked and analyzed by ChIP for specific proteins at the site of the break. The system allows the direct detection of protein and chromatin dynamics at the site of the break with high resolution, as well as direct measurement of DNA repair defects in human cells. Starting with fragmented chromatin, results can be achieved in 2-3 d.  相似文献   

19.
20.
J L Workman  J P Langmore 《Biochemistry》1985,24(25):7486-7497
We describe a new technique designed to isolate specific eukaryotic genes as native oligonucleosome fragments. The isolation method consists of hybridization of single-stranded termini of chromatin restriction fragments to complementary mercurated DNA probes, followed by isolation of the hybrids by sulfhydryl-Sepharose chromatography. SV40 minichromosomes were used to test the effectiveness of the technique. About 80% of KpnI- or BamHI-restricted and lambda exonuclease treated SV40 minichromosomes hybridized to an appropriate DNA probe after a 12-h hybridization reaction under mild conditions (0.1 M aqueous salt, 37 degrees C, pH 8). When the restricted minichromosomes were mixed with a 15-fold excess of "background" chromatin from sea urchin embryos, nucleoprotein hybridization was able to reisolate the SV40 chromatin to 88% purity with a 63% yield. This represented a 115-fold enrichment of specific genes as chromatin. Results of electron microscopy and polyacrylamide gel electrophoresis indicate that the hybridized SV40 chromatin has not lost the major chromosomal proteins characteristic of SV40 nor acquired significant amounts of protein due to exchange with background chromatin. Our experimental results show that it is currently possible to isolate repeated genes from higher eukaryotes for structural and biochemical study of the proteins involved with gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号