首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prosthetic groups in succinate dehydrogenase. Number and stoichiometry   总被引:1,自引:0,他引:1  
I. Succinate:Q oxidoreductase (EC 1.3.99.1) as present in beef-heart submitochondrial particles contains equal amounts of FAD, a [2Fe-2S] cluster and a [4Fe-4S] cluster. Both Fe-S clusters are reducible by succinate. 2. A second type of [2Fe-2S] cluster, called center S-2, that has been proposed to be present in purified preparations of succinate dehydrogenase and isolated Complex II (Ohnishi, T., Winter, D.B., Lim, J. and King, T.E. (1973) Biochem. Biophys. Res. Commun. 53, 231--237) is an artifact introduced by the purification procedure. 3. It is suggested that the 70 000 dalton subunit which is known to bind the flavin, accomodates also the [4Fe-4S] cluster whereas the 28 000 dalton subunit contains the [2Fe-2S] cluster.  相似文献   

2.
Azospirillum brasilense glutamate synthase has been studied by absorption, electron paramagnetic resonance, and circular dichroism spectroscopies in order to determine the type and number of iron-sulfur centers present in the enzyme alpha beta protomer and to gain information on the role of the flavin and iron-sulfur centers in the catalytic mechanism. The FMN and FAD prosthetic groups are demonstrated to be non-equivalent with respect to their reactivities with sulfite. Sulfite reacts with only one of the two flavins forming an N(5)-sulfite adduct with a Kd of approximately 1 mM. The enzyme-sulfite complex is reduced by NADPH, and the complexed sulfite is competitively displaced by 2-oxoglutarate, which suggests the reactive flavin to be at the imine-reducing site. These data are in agreement with the two-site model of the enzyme active center proposed on the basis of kinetic studies [Vanoni, M.A., Nuzzi, L., Rescigno, M., Zanetti, G., & Curti, B. (1991) Eur. J. Biochem. 202, 181-189]. Each enzyme protomer was found, by chemical analysis, to contain 12.1 +/- 0.5 mol of non-heme iron. Electron paramagnetic resonance spectroscopic studies on the oxidized and reduced forms of glutamate synthase demonstrated the presence of three distinct iron-sulfur centers per enzyme protomer. The oxidized enzyme exhibits an axial spectrum with g values at 2.03 and 1.97, which is highly temperature-dependent and integrates to 1.1 +/- 0.2 spin/protomer. This signal is assigned to a [3Fe-4S]1+ cluster (Fe-S)I. Reduction of the enzyme with an NADPH-regenerating system results in reduction of the [3Fe-4S]1+ center to a species with a g approximately 12 signal characteristic of the S = 2 spin state of a [3Fe-4S]0 cluster. The NADPH-reduced enzyme also exhibits an [Fe-S] signal at g values of 1.98, 1.95, and 1.88, which integrates to 0.9 spin/protomer and is due to a second cluster (Fe-S)II. Reduction of the enzyme with the light/deazaflavin method results in a signal characteristic of [Fe-S] clusters with g values of 2.03, 1.92, and 1.86 and an integrated intensity of 1.9 spin/protomer. This signal arises from reduction of the (Fe-S)II center and from that of the third, lower potential iron-sulfur center (Fe-S)III. Circular dichroism spectral data on the oxidized and reduced forms of the enzyme are more consistent with the assignment of (Fe-S)II and (Fe-S)III as [4Fe-4S] clusters rather than [2Fe-2S] centers.  相似文献   

3.
Reconstitutively active and inactive succinate dehydrogenase have been investigated by low temperature magnetic circular dichroism (MCD) and EPR spectroscopy and room temperature CD and absorption spectroscopy. Reconstitutively active succinate dehydrogenase is found to contain three spectroscopically distinct Fe-S clusters: S1, S2, and S3. In agreement with previous studies, MCD and CD spectroscopy confirm that center S1 is a succinate-reducible [2Fe-2S]2+,1+ center. The MCD characteristics of center S2 identify it as a dithionite-reducible [4Fe-4S]2+,1+ similar to those in bacterial ferredoxins. EPR power saturation studies and the weakness of the EPR signal from reduced S2 indicate that there is a weak magnetic interaction between centers S1 and S2 in their paramagnetic, S = 1/2, reduced states. Center S3 is identified both by the form of the MCD spectrum and the characteristic magnetization behavior as a reduced [3Fe-xS] center in both succinate- and dithionite-reduced reconstitutively active succinate dehydrogenase. Arguments are presented in favor of centers S2 and S3 being separate centers rather than interconversion products of the same cluster. Reconstitutively inactive succinate dehydrogenase is found to be deficient in center S3. These results resolve many of the controversies concerning the Fe-S cluster content of succinate dehydrogenase and reconcile published EPR data with analytical and core extrusion studies. Moreover, they indicate that center S3 is a necessary requirement for reconstitutive activity and suggest that it is able to sustain ubiquinone reductase activity as a [3Fe-xS] center.  相似文献   

4.
1. From the 57Fe hyperfine interaction in EPR spectra of reduced submitochondrial particles from the yeast Candida utilis, grown with 57Fe, it is concluded that all Fe-S centers in these particles detectable in spectra at 35-80 K are [2Fe-2S]2-(2-; 3-) centers. These are the centers 1 of NADH and succinate dehydrogenase, the Rieske Fe-S center and possibly center 2 of succinate dehydrogenase. 2. The signals of the reduced particles detectable only at temperatures below 20 K are [4Fe-4S]2-(2-; 3-) clusters. These are the centers 2,3 and 4 of NADH dehydrogenase. 3. EPR spectra of the [2Fe-2S]3- centers of Complex I and II, but not that of Complex III, display a great inequality of the Fe nuclei in the effective hyperfine interaction in the x-y direction.  相似文献   

5.
The Escherichia coli lipA gene product has been genetically linked to carbon-sulfur bond formation in lipoic acid biosynthesis [Vanden Boom, T. J., Reed, K. E., and Cronan, J. E., Jr. (1991) J. Bacteriol. 173, 6411-6420], although in vitro lipoate biosynthesis with LipA has never been observed. In this study, the lipA gene and a hexahistidine tagged lipA construct (LipA-His) were overexpressed in E. coli as soluble proteins. The proteins were purified as a mixture of monomeric and dimeric species that contain approximately four iron atoms per LipA polypeptide and a similar amount of acid-labile sulfide. Electron paramagnetic resonance and electronic absorbance spectroscopy indicate that the proteins contain a mixture of [3Fe-4S] and [4Fe-4S] cluster states. Reduction with sodium dithionite results in small quantities of an S = 1/2 [4Fe-4S](1+) cluster with the majority of the protein containing a species consistent with an S = 0 [4Fe-4S](2+) cluster. LipA was assayed for lipoate or lipoyl-ACP formation using E. coli lipoate-protein ligase A (LplA) or lipoyl-[acyl-carrier-protein]-protein-N-lipoyltransferase (LipB), respectively, to lipoylate apo-pyruvate dehydrogenase complex (apo-PDC) [Jordan, S. W., and Cronan, J. E. (1997) Methods Enzymol. 279, 176-183]. When sodium dithionite-reduced LipA was incubated with octanoyl-ACP, LipB, apo-PDC, and S-adenosyl methionine (AdoMet), lipoylated PDC was formed. As shown by this assay, octanoic acid is not a substrate for LipA. Confirmation that LipA catalyzes formation of lipoyl groups from octanoyl-ACP was obtained by MALDI mass spectrometry of a recombinant PDC lipoyl-binding domain that had been lipoylated in a LipA reaction. These results provide information about the mechanism of LipA catalysis and place LipA within the family of iron-sulfur proteins that utilize AdoMet for radical-based chemistry.  相似文献   

6.
Hydrogenase II contains two iron-sulfur clusters, one of the [4Fe-4S] type and one of unknown structure with unusual spectral properties (H-cluster). Using M?ssbauer spectroscopy we have studied the H-cluster under a variety of conditions. In the reduced state the cluster exhibits, in zero magnetic field, spectra with the typical 2:1 quadrupole pattern of reduced [3Fe-4S] clusters. However, whereas the latter are paramagnetic (S = 2) the H-cluster is diamagnetic (S = 0). Upon oxidation and exposure to CO the H-cluster exhibits an S = 1/2 EPR spectrum with g values at 2.03, 2.02, and 2.00. In this state, the M?ssbauer spectra reveal two cluster subsites with magnetic hyperfine coupling constants AI = +26.5 MHz and AII = -30 MHz. ENDOR data obtained by Hoffman and co-workers (Telser, J., Benecky, M. J., Adams, M. W. W., Mortenson, L. E., and Hoffman, B. M. (1986) J. Biol. Chem. 261, 13536-13541) show a 57Fe resonance at AIII approximately equal to 9.5 MHz. Analysis of the M?ssbauer spectra shows that this resonance represents one iron site. Our studies of the reduced and CO-bound oxidized states of hydrogenase II suggest that the H-cluster contains three iron atoms. The data obtained for the oxidized H-cluster suggest a novel type of 3-Fe cluster and bear little resemblance to those reported for oxidized [3Fe-4S] clusters with g = 2.01 EPR signals. In the reduced sample the [4Fe-4S]1+ cluster appears to occur in a mixture of two distinct electronic states.  相似文献   

7.
Ferredoxin from Methanosarcina thermophila is an electron acceptor for the CO dehydrogenase complex which decarbonylates acetyl-coenzyme A and oxidizes the carbonyl group to carbon dioxide in the pathway for conversion of the methyl group of acetate to methane (K. C. Terlesky and J. G. Ferry, J. Biol. Chem. 263:4080-4082, 1988). Resonance Raman spectroscopy and electron paramagnetic resonance spectroelectrochemistry indicated that the ferredoxin contained two [4Fe-4S] clusters per monomer of 6,790 Da, each with a midpoint potential of -407 mV. A [3Fe-4S] species, with a midpoint potential of +103 mV, was also detected in the protein at high redox potentials. Quantitation of the [3Fe-4S] and [4Fe-4S] centers revealed 0.4 and 2.1 spins per monomer, respectively. The iron-sulfur clusters were unstable in the presence of air, and the rate of cluster loss increased with increasing temperature. A ferredoxin preparation, with a low spin quantitation of [4Fe-4S] centers, was treated with Fe2+ and S2-, which resulted in an increase in [4Fe-4S] and a decrease in [3Fe-4S] clusters. The results of these studies suggest the [3Fe-4S] species may be an artifact formed from degradation of [4Fe-4S] clusters.  相似文献   

8.
The properties of the [4Fe-4S] cluster in glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis have been investigated using low temperature magnetic circular dichroism, electron paramagnetic resonance (EPR), and resonance Raman spectroscopies. The Raman spectra of the native enzyme in the Fe-S stretching region show a [4Fe-4S]2+ cluster that is structurally very similar to those in simple redox proteins. Photochemical reduction mediated by 5-deazaflavin with oxalate as the electron donor resulted in [4Fe-4S]+ clusters with a mixture of ground state spin multiplicities. Magnetic circular dichroism and EPR studies of samples ranging in concentration from 0.15 to 0.4 mM concur in finding S = 3/2 [4Fe-4S]+ clusters with predominantly axial and positive zero field splitting as the dominant species. The EPR studies also revealed minor contributions from S = 1/2 [4Fe-4S]+ centers and an S = 5/2 species. The latter becomes the dominant component in more concentrated samples (approximately 2 mM), and arguments are presented in favor of assignment to S = 5/2 [4Fe-4S]+ clusters rather than adventitiously bound high spin Fe(III) ions. The concentration-dependent spin state heterogeneity of the [4Fe-4S]+ cluster in glutamine phosphoribosylpyrophosphate amidotransferase is discussed in light of the magnetic and electronic properties of the [4Fe-4S]+ centers in other enzymes and proteins.  相似文献   

9.
The reversible dehydration of (R)-2-hydroxyglutaryl-CoA to (E)-glutaconyl-CoA is catalysed by the combined action of two oxygen-sensitive enzymes from Acidaminococcus fermentans, the homodimeric component A (2 x 27 kDa) and the heterodimeric component D (45 and 50 kDa). Component A was purified to homogeneity (specific activity 25-30 s-1) using streptavidin-tag affinity chromatography. In the presence of 5 mM MgCl2 and 1 mM ADP or ATP, component A could be stabilized and stored for 4-5 days at 4 degrees C without loss of activity. The purification of component D from A. fermentans was also improved as indicated by the 1.5-fold higher specific activity (15 s-1). The content of 1.0 riboflavin 5'-phosphate (FMN) per heterodimer could be confirmed, whereas in contrast to an earlier report only trace amounts of riboflavin (< 0.1) could be detected. Each active component contains an oxygen sensitive diamagnetic [4Fe-4S]2+ cluster as revealed by UV-visible, EPR and M?ssbauer spectroscopy. Reduction of the [4Fe-4S]2+ cluster in component A with dithionite yields a paramagnetic [4Fe-4S]1+ cluster with the unusual electron spin ground state S = 3/2 as indicated by strong absorption type EPR signals at high g values, g = 4-6. Spin-Hamiltonian simulations of the EPR spectra and of magnetic M?ssbauer spectra were performed to determine the zero field splitting (ZFS) parameters of the cluster and the 57Fe hyperfine interaction parameters. The electronic properties of the [4Fe-4S]2+, 1+ clusters of component A are similar to those of the nitrogenase iron protein in which a [4Fe-4S]2+ cluster bridges the two subunits of the homodimeric protein. Under air component A looses its activity within seconds due to irreversible degradation of its [4Fe-4S]2+ cluster to a [2Fe-2S]2+ cluster. The [4Fe-4S]2+ cluster of component D could not be reduced to a [4Fe-4S]1+ cluster, even with excess of Ti(III)citrate or dithionite. Exposure to oxic conditions slowly converts the diamagnetic [4Fe-4S]2+ cluster of component D to a paramagnetic [3Fe-4S]+ cluster concomitant with loss of activity (30% within 24 h at 4 degrees C).  相似文献   

10.
Low-temperature electron spin resonance spectroscopy was used to investigate the redox centres of Micrococcus luteus membranes. Three different types of iron-sulphur centres were distinguished. Two of these, a [4Fe-4S]3+-type cluster giving rise to a signal at g = 2.01 in the oxidized state and a [2Fe-2S] cluster with a spectrum at g = 2.03 and 1.93 in the reduced state, were attributable to succinate dehydrogenase. Another, generating signals in the reduced state at g = 2.027, 1.90 and 1.78 was identified as a 'Rieske' iron-sulphur centre. This latter cluster had a mid-point potential (pH 7.0) of +130 mV. In addition, signals characteristic of high-spin ferric haem (g = 6.20), low-spin ferric haem (g = 3.67, 3.36 and 3.01) and Cu2+ (g = 2.18 and 2.02) were also detected. The ferric-haem features, together with the Cu2+ and 'Rieske' centres, were enriched in membrane residues insoluble in Triton X-100, which are known from difference spectroscopy to contain cytochromes b-560, c-550 and a-601 (aa3 oxidase). The signals demonstrated by electron spin resonance for M. luteus membranes showed marked similarities to those documented for the complexes II, III, and IV of mitochondria. However, signals analogous to complex I (NADH-ubiquinone reductase) could not be demonstrated for M. luteus membranes.  相似文献   

11.
The iron-sulfur cluster composition of Escherichia coli nitrate reductase   总被引:5,自引:0,他引:5  
Nitrate reductase from Escherichia coli has been investigated by low-temperature magnetic circular dichroism and electron paramagnetic resonance (EPR) spectroscopies, as well as by Fe-S core extrusion, to determine the Fe-S cluster composition. The results indicate approximately one 3Fe and three or four [4Fe-4S]2+,1+ centers/molecule of isolated enzyme. The magnetic circular dichroism spectra and magnetization characteristics show the oxidized and reduced 3Fe and [4Fe-4S] centers to be electronically analogous to those in bacterial ferredoxins. The form and spin quantitation of the EPR spectra from [4Fe-4S]1+ centers in the reduced enzyme were found to vary with the conditions of reduction. For the fully reduced enzyme, the EPR spectrum accounted for between 2.9 and 3.5 spins/molecule, and comparison with partially reduced spectra indicates weak intercluster magnetic interactions between reduced paramagnetic centers. In common with other Fe-S proteins, the 3Fe center was not extruded intact under standard conditions. The results suggest that nitrate reductase is the first example of a metalloenzyme where enzymatic activity is associated with a form that contains an oxidized 3Fe center. However, experiments to determine whether or not the 3Fe center is present in vivo were inconclusive.  相似文献   

12.
Pyrococcus furiosus ferredoxin is the only known example of a ferredoxin containing a single [4Fe-4S] cluster that has non-cysteinyl ligation of one iron atom, as evidenced by the replacement of a ligating cysteine residue by an aspartic acid residue in the amino acid sequence. The properties of the iron-sulfur cluster in both the aerobically and anaerobically isolated ferredoxin have been characterized by EPR, magnetic circular dichroism, and resonance Raman spectroscopies. The anaerobically isolated ferrodoxin contains a [4Fe-4S]+,2+ cluster with anomalous properties in both the oxidized and reduced states which are attributed to aspartate and/or hydroxide coordination of a specific iron atom. In the reduced form, the cluster exists with a spin mixture of S = 1/2 (20%) and S = 3/2 (80%) ground states. The dominant S = 3/2 form has a unique EPR spectrum that can be rationalized by an S = 3/2 spin Hamiltonian with E/D = 0.22 and D = +3.3 +/- 0.2 cm-1. The oxidized cluster has an S = 0 ground state, and the resonance Raman spectrum is characteristic of a [4Fe-4S]2+ cluster except for the unusually high frequency for the totally symmetric breathing mode of the [4Fe-4S] core, 342 cm-1. Comparison with Raman spectra of other [4Fe-4S]2+ centers suggests that this behavior is diagnostic of anomalous coordination of a specific iron atom. The iron-sulfur cluster is shown to undergo facile and quantitative [4Fe-4S] in equilibrium [3Fe-4S] interconversion, and the oxidized and reduced forms of the [3Fe-4S] cluster have S = 1/2 and S = 2 ground states, respectively. In both redox states the [3Fe-4S]0,+ cluster exhibits spectroscopic properties analogous to those of similar clusters in other bacterial ferredoxins, suggesting non-cysteinyl coordination for the iron atom that is removed by ferricyanide oxidation. Aerobic isolation induces partial degradation of the [4Fe-4S] cluster to yield [3Fe-4S] and possibly [2Fe-2S] centers. Evidence is presented to show that only the [4Fe-4S] form of this ferredoxin exists in vivo.  相似文献   

13.
Archaeal zinc-containing ferredoxin from Sulfolobus sp. strain 7 contains one [3Fe-4S] cluster (cluster I), one [4Fe-4S] cluster (cluster II), and one isolated zinc center. Oxidative degradation of this ferredoxin led to the formation of a stable intermediate with 1 zinc and approximately 6 iron atoms. The metal centers of this intermediate were analyzed by electron paramagnetic resonance (EPR), low temperature resonance Raman, x-ray absorption, and (1)H NMR spectroscopies. The spectroscopic data suggest that (i) cluster II was selectively converted to a cubane [3Fe-4S](1+) cluster in the intermediate, without forming a stable radical species, and that (ii) the local metric environments of cluster I and the isolated zinc site did not change significantly in the intermediate. It is concluded that the initial step of oxidative degradation of the archaeal zinc-containing ferredoxin is selective conversion of cluster II, generating a novel intermediate containing two [3Fe-4S] clusters and an isolated zinc center. At this stage, significant structural rearrangement of the protein does not occur. We propose a new scheme for oxidative degradation of dicluster ferredoxins in which each cluster converts in a stepwise manner, prior to apoprotein formation, and discuss its structural and evolutionary implications.  相似文献   

14.
The [NiFe] hydrogenase isolated from Desulfovibrio gigas was poised at different redox potentials and studied by M?ssbauer spectroscopy. The data firmly establish that this hydrogenase contains four prosthetic groups: one nickel center, one [3Fe-xS], and two [4Fe-4S] clusters. In the native enzyme, both the nickel and the [3Fe-xS] cluster are EPR-active. At low temperature (4.2 K), the [3Fe-xS] cluster exhibits a paramagnetic M?ssbauer spectrum typical for oxidized [3Fe-xS] clusters. At higher temperatures (greater than 20 K), the paramagnetic spectrum collapses into a quadrupole doublet with parameters magnitude of delta EQ magnitude of = 0.7 +/- 0.06 mm/s and delta = 0.36 +/- 0.06 mm/s, typical of high-spin Fe(III). The observed isomer shift is slightly larger than those observed for the three-iron clusters in D. gigas ferredoxin II (Huynh, B. H., Moura, J. J. G., Moura, I., Kent, T. A., LeGall, J., Xavier, A. V., and Münck, E. (1980) J. Biol. Chem. 255, 3242-3244) and in Azotobacter vinelandii ferredoxin I (Emptage, M. H., Kent, T. A., Huynh, B. H., Rawlings, J., Orme-Johnson, W. H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796) and may indicate a different iron coordination environment. When D. gigas hydrogenase is poised at potentials lower than -80 mV (versus normal hydrogen electrode), the [3Fe-xS] cluster is reduced and becomes EPR-silent. The M?ssbauer data indicate that the reduced [3Fe-xS] cluster remains intact, i.e. it does not interconvert into a [4Fe-4S] cluster. Also, the electronic properties of the reduced [3Fe-xS] cluster suggest that it is magnetically isolated from the other paramagnetic centers.  相似文献   

15.
An 88-kDa corrinoid/iron-sulfur protein (C/Fe-SP) is the methyl carrier protein in the acetyl-CoA pathway of Clostridium thermoaceticum. In previous studies, it was found that this C/Fe-SP contains (5-methoxybenzimidazolyl)cobamide and a [4Fe-4S]2+/1+ center, both of which undergo redox cycling during catalysis, and that the benzimidazole base is uncoordinated to the cobalt (base off) in all three redox states, 3+, 2+, and 1+ [Ragsdale, S.W., Lindahl, P.A., & Münck, E. (1987) J. Biol. Chem. 262, 14289-14297]. In this paper, we have determined the midpoint reduction potentials for the metal centers in this C/Fe-SP by electron paramagnetic resonance and UV-visible spectroelectrochemical methods. The midpoint reduction potentials for the Co3+/2+ and the Co2+/1 couples of the corrinoid were found to be 300-350 and -504 mV (+/- 3 mV) in Tris-HCl at pH 7.6, respectively. We also removed the (5-methoxybenzimidazolyl)cobamide cofactor from the C/Fe-SP and determined that its Co3+/2+ reduction potential is 207 mV at pH 7.6. The midpoint potential for the [4Fe-4S]2+/1+ couple in the C/Fe-SP was determined to be -523 mV (+/- 5 mV). Removal of this cluster totally inactivates the protein; however, there is little effect of cluster removal on the midpoint potential of the Co2+/1+ couple. In addition, removal of the cobamide has an insignificant effect on the midpoint reduction potential of the [4Fe-4S] cluster. A 27-kDa corrinoid protein (CP) also was studied since it contains (5-methoxybenzimidazolyl)cobamide in the base-on form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
We have recently shown (Lindahl, P. A., Day, E. P., Kent, T. A., Orme-Johnson, W. H., and Münck, E. (1985) J. Biol. Chem. 260, 11160-11173) that the [4Fe-4S]1+ cluster of the native Fe protein can exist in two forms characterized by different cluster spin: an S = 1/2 state exhibiting a g = 1.94 type EPR signal and an S = 3/2 state yielding signals at g approximately 5.8 and 5.1. We have now extended our study of the Fe protein to include the MgATP- and MgADP-bound forms. The [4Fe-4S]1+ cluster of the nucleotide-bound Fe protein exists in a similar S = 1/2, S = 3/2 spin mixture. The S = 3/2 cluster exhibits a broad EPR signal at g approximately 4.8. In spectra of the MgATP-bound protein, we have also observed a g = 4.3 signal from an S = 5/2 state (D = 1 - 3 cm-1, E/D approximately 0.32). Various experiments strongly suggest that this signal does not originate from adventitiously bound Fe3+. The g = 4.3 signal may arise from approximately 2% of the [4Fe-4S]1+ clusters when MgATP is protein-bound. We have also discovered substoichiometric amounts of what appears to be ADP in some nominally nucleotide-free Fe protein samples. MgATP binds to Fe protein in the presence of perturbing solvents, resulting in EPR spectra similar to those of MgATP-bound samples in aqueous solutions; MgADP binding, on the other hand, results in signals more typical of the solvent state. Spectra of samples frozen during turnover of the nitrogenase system exhibit a mixture of spin states. Characterization of the Fe protein EPR signature described here should aid future mechanistic and nucleotide-binding studies.  相似文献   

18.
We have purified to homogeneity the 88-kDa corrinoid protein from Clostridium thermoaceticum which acts as a methyl carrier in the synthesis of acetyl-CoA. As shown here, this protein contains a [4Fe-4S]1+/2+ cluster in addition to a corrinoid. The corrinoid is 5-methoxybenzimidazolylcobamide, with an OH- group probably present as the upper axial ligand. Co+ is present in the reduced form, Co2+ in the as-isolated form, and Co3+ in the methylated form of the protein. The as-isolated corrinoid/Fe-S protein exhibits a Co2+ EPR signal lacking nitrogen superhyperfine splittings, indicating that the benzimidazole base is uncoordinated ("base-off") in the Co2+ state. Optical studies suggest that the Co3+-CH3 corrinoid is also base-off. In the as-isolated and methylated forms, the iron-sulfur cluster is diamagnetic, with quadrupole splittings and isomer shifts characteristic of [4Fe-4S]2+ clusters. The protein can be reduced by CO and CO dehydrogenase in the absence of ferredoxin. The EPR spectra of the reduced cluster exhibit two components: one with principal g-values at 2.07, 1.93, and 1.82 and the other at 2.02, 1.94, and 1.86. The M?ssbauer data show that these signals result from [4Fe-4S]1+ clusters. Chemical analysis shows that the iron:cobalt atomic ratio is close to 4:1, suggesting that a single [4Fe-4S]1+ cluster occurs in two distinct S = 1/2 spin states in the reduced state. Treatment with 1-2.5 M urea converts the two cluster forms into a single one, with EPR and M?ssbauer spectra of typical [4Fe-4S]1+ clusters. A 27-kDa corrinoid protein (Ljungdahl, L.G., LeGall, J., and Lee, J.P. (1973) Biochemistry 12, 1802-1808) also was purified and found to be inactive in the synthesis of acetyl-CoA, contrary to the suggestion of Ljungdahl et al. (1973).  相似文献   

19.
Rapid and quantitative reductive coupling of two [2Fe-2S]2+ clusters to form a single [4Fe-4S]2+ cluster on the homodimeric IscU Fe-S cluster scaffold protein has been demonstrated by UV-visible absorption, M?ssbauer, and resonance Raman spectroscopies, using dithionite as the electron donor. Partial reductive coupling was also observed using reduced Isc ferredoxin, which raises the possibility that Isc ferredoxin is the physiological reductant. The results suggest that reductive coupling of adjacent [2Fe-2S]2+ clusters assembled on IscU provides a general mechanism for the final step in the biosynthesis of [4Fe-4S]2+ clusters. The [4Fe-4S]2+ center on IscU can be reduced to a S = 1/2[4Fe-4S]+ cluster (g parallel = 2.06 and g perpendicular = 1.92), but the low midpoint potential (< -570 mV) and instability of the reduced cluster argue against any physiological relevance for the reduced cluster. On exposure to O2, the [4Fe-4S]2+ cluster on IscU degrades via a semistable [2Fe-2S]2+ cluster with properties analogous to those of the [2Fe-2S]2+ center in [2Fe-2S]2+ IscU. It is suggested that the ability of IscU to accommodate either [2Fe-2S]2+ or [4Fe-4S]2+ clusters in response to cellular redox status and/or oxygen levels may provide an effective way to populate appropriately cluster-loaded forms of IscU for maturation of different types of [Fe-S] proteins.  相似文献   

20.
A study has been carried out of the redox-linked metal ion uptake processes of the iron-sulphur cluster [3Fe-4S] in the bacterial ferredoxin, Fd III from Desulphovibrio africanus using a combination of electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy and direct, unmediated electrochemistry of the Fd in a film deposited at a pyrolytic graphite electrode. Reduction of the three-iron cluster is required before a divalent metal ion becomes bound as in the reaction sequence [formula: see text] The redox potentials of these processes and the metal binding constants have been determined. The affinities of the [3Fe-4S]0 cluster for divalent ions lie in the sequence Cd greater than Zn much greater than Fe. In addition, specific binding of a monovalent ion, Thallium(I), is detected for [3Fe-4S]1+ as well as for [3Fe-4S]0. The results provide a clear and quantitative demonstration of the capability of the open triangular tri-mu 2-sulphido face of a [3Fe-4S] cluster to bind a variety of metal ions if the protein environment permits. In each case the entering metal ion is coordinated by at least one additional ligand which may be from solvent (H2O or OH-) or from a protein side chain (e.g., carboxylate from aspartic acid). Hence the [3Fe-4S] core can be a redox-linked sensor of divalent metal ions, Fe(II) or Zn(II), that may trigger conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号