首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pärtel (Ecology 83: 2361–2366, 2002) andEwald (Folia Geobot. 38: 357–366, 2003) suggest that the relationship between local species density and soil pH is determined by regional species pool size, which in turn reflects the relative abundance of soil types during the evolutionary history of the flora. Ewald observed that calcareous sites in Central Europe have higher species density and larger species pools than acidic sites, and argues that this is the consequence of a Pleistocene bottleneck for acidophiles.The flora of the southern Blue Ridge Mountains USA has always been associated with primarily acidic soils. We used vegetation and soil data from 3328 100 m2 southern Blue Ridge forest plots to examine the generality of the Pärtel-Ewald hypothesis. The Blue Ridge flora with less than 20% of species confined to sites above pH 4.7 contrasts dramatically with that of Europe. However, regional species pool size increases with pH. Genus- and family-level pools increase with pH, suggesting an ancient origin for this pattern. Mean species density is also strongly positively correlated with soil pH. Thus, both regional species pool size and plot species density of southern Blue Ridge forests fail to conform to predictions derived from the work of Pärtel and Ewald.The increase in species pool with increase in pH exhibited by southern Blue Ridge forests appears to reflect broad species distributions and tolerance for high pH conditions among species that grow predominantly under acid conditions. We conclude that richness on higher pH sites is a consequence of generally more favorable conditions for plant growth and/or establishment. Ewald may be correct in asserting that the abundance of high pH specialists in Central Europe is an historical artifact, but our data contradict the assertion of Pärtel and Ewald that evolution of a flora in a primarily low pH environment will necessarily translate into a negative correlation between pH and species density in local vegetation.  相似文献   

2.
The intactness of DNA is the keystone of genome-based clinical investigations, where rapid molecular detection of life-threatening bacteria is largely dependent on the isolation of high-quality DNA. Various protocols have been so far developed for genomic DNA isolation from bacteria, most of which have been claimed to be reproducible with relatively good yields of high-quality DNA. Nonetheless, they are not fully applicable to various types of bacteria, their processing cost is relatively high, and some toxic reagents are used. The routine protocols for DNA extraction appear to be sensitive to species diversity, and may fail to produce high-quality DNA from different species. Such protocols remain time-consuming and tedious, thus to resolve some of these impediments, we report development of a very simple, rapid, and high-throughput protocol for extracting of high-quality DNA from different bacterial species. Based upon our protocol, interfering phenolic compounds were removed from extraction using polyvinylpyrrolidone (PVP) and RNA contamination was precipitated using LiCl. The UV spectrophotometry and gel electrophoresis analysis resulted in high A 260/A 280 ratio (>1.8) with high intactness of DNA. Subsequent evaluations were performed using some quality-dependent techniques (e.g., RAPD marker and restriction digestions). The isolated DNA from 9 different bacterial species confirmed the accuracy of this protocol which requires no enzymatic processing and accordingly its low-cost making it an appropriate method for large-scale DNA isolation from various bacterial species.  相似文献   

3.
Photoprotective strategies vary greatly within the plant kingdom and reflect a plant's physiological status and capacity to cope with environment variations. The plasticity and intensity of these responses may determine plant success. Invasive species are reported to show increased vigor to displace native species. Describing the mechanisms that confer such vigor is essential to understanding the success of invasive species. We performed an experiment whereby two species were monitored: Carpobrotus edulis, an aggressive invasive species in the Mediterranean basin, and Crithmum maritimum, a coexisting native species in the Cap de Creus Natural Park (NE Spain). We analyzed their photoprotective responses to seasonal environmental dynamics by comparing the capacity of the invader to respond to the local environmental stresses throughout the year. Our study analyses ecophysiological markers and photoprotective strategies to gain an insight into the success of invaders. We found that both species showed completely different but effective photoprotective strategies: in summer, C. edulis took special advantage of the xanthophyll cycle, whereas the success of C. maritimum in summer stemmed from morphological changes and alterations on β‐carotene content. Winter also presented differences between the species, as the native showed reduced Fv/Fm ratios. Our experimental design allowed us to introduce a new approach to compare phenotypic plasticity: the integrated phenotypic plasticity index (PPint), defined as the maximum Euclidian distance between phenotypes, using a combination of different variables to describe them. This index revealed significantly greater phenotypic plasticity in the invasive species compared to the native species.  相似文献   

4.
Alpine Trifolium species have high rates of symbiotic N2-fixation which may influence the abundance and growth of plant species growing near them. The potential for facilitative effects on plant abundance and growth in dry meadow alpine tundra of Niwot Ridge, Colo., characterized by low resource availability, was investigated by measuring soil N, aboveground biomass production, and plant species composition in patches of Trifolium dasyphyllum and surrounding tundra. Extractable inorganic N was more than twofold greater and extractable P was 27% lower in Trifolium patches than in surrounding tundra. Aboveground production was twofold greater in Trifolium patches than in surrounding tundra. However, the difference was largely due to the production of T. dasyphyllum relative to the non-Trifolium component of biomass, which was not different between the Trifolium patches and surrounding tundra. In the Trifolium patches, the proportion of graminoid biomass was lower while the proportion of forb biomass was higher relative to surrounding tundra. Although the abundance of some species was positively associated with the presence of Trifolium, other species were less abundant, possibly due to increased competition for P and differential abilities of alpine species to respond to increased N availability. Trifolium may exert both facilitative and inhibitive effects on dry meadow alpine species and, in the process, substantially influence the spatial heterogeneity in community structure and primary production. Received: 14 October 1997 / Accepted: 2 February 1998  相似文献   

5.
We examined the photosynthetic acclimation of three tropical species of Miconia to canopy openings in a Costa Rican rainforest. The response of photosynthesis to canopy opening was very similar in Miconia affinis, M. gracilis, and M. nervosa, despite differences in growth form (trees and shrubs) and local distributions of plants (understory and gap). Four months after the canopy was opened by a treefall, photosynthetic capacity in all three species had approximately doubled from closed canopy levels. There were no obvious signs of high light damage after treefall but acclimation to the gap environment was not immediate. Two weeks after treefall, Amax, stomatal conductance, apprarent quantum efficiency, and dark respiration rates had not changed significantly from understory values. The production of new leaves appears to be an important component of light acclimation in these species. The only variables to differ significantly among species were stomatal conductance at Amax and the light level at which assimilation was saturated. M. affinis had a higher stomatal conductance which may reduce its water use efficiency in gap environments. Photosynthesis in the more shade-tolerant M. gracilis saturated at lower light levels than in the other two species. Individual plant light environments were assessed after treefall with canopy photography but they explained only a small fraction of plant variation in most measures of photosynthesis and growth. In conclusion, we speculate that species differences in local distribution and in light requirements for reproduction may be more strongly related to species differences in carbon allocation than in carbon assimilation.  相似文献   

6.

Temperate organisms are generally exposed to a more variable and cooler climate than tropical organisms, and are therefore expected to have broader thermal tolerance and a different thermal performance curve. This study investigated these hypotheses by comparing the thermal performance of two common tropical coral species found in the Great Barrier Reef with the two most common temperate coral species from the Mediterranean Sea. Photosynthesis rates, dark respiration rates, maximum PSII quantum yield (Fv/Fm) and electron transport rates (rETRm) were measured on coral fragments exposed to an acute temperature increase and decrease up to 5 °C above and below the average environmental seawater temperature. Dark respiration rates and Fv/Fm increased linearly with temperature, suggesting broad thermal tolerance. For photosynthesis and rETRm, the performance breadths were surprisingly similar between the tropical and temperate species. However, the thermal optimum for performance was generally below the local average temperature, and only coincided with the prevailing environmental temperature for one of the tropical species. The broad thermal tolerance for photosynthesis displayed in this study supports previous observations that corals can survive short periods of abnormally warm temperatures and suggests that corals adopt thermal generalist strategies to cope with temperature variation in the environment. Nevertheless, current mean temperatures are 10–30% above the thermal optimum for the species studied here, demonstrating that conditions are already pushing the boundaries of coral thermal tolerance.

  相似文献   

7.
A fundamental question linking population genetics and community ecology is how adaptive processes (e.g., natural selection) and neutral processes (e.g., drift‐migration equilibrium) underpin the species‐genetic diversity correlation (SGDC). Here, we combine genome scans and outlier loci detection with community analysis to separately test for neutral and nonneutral SGDCs in four species of stream insect. We sampled 60 localities in Japan and examined the relationships among population AFLP band richness (Br), taxon richness of the total community (S) and of the trophic guild (Str), and 15 habitat parameters that could potentially drive adaptation and influence richness. Neutral Br was positively correlated with S only in the dominant species of these communities, suggesting Br may be constrained when intraspecific competition is pronounced. Nonneutral Br was correlated with Str in a species restricted to high elevations where habitat heterogeneity was highest. Community distance and genetic distance (β‐SGDC) was correlated in two of the four species at both neutral and nonneutral loci. Distance‐based redundancy analysis found geographic isolation and elevation to drive divergence of both communities and populations. This suggests that both neutral and adaptive divergence occurred through the shared influences of geographic isolation and local adaptation at the two levels of diversity.  相似文献   

8.
Torti VM  Dunn PO 《Oecologia》2005,145(3):486-495
Many recent studies have shown that birds are advancing their laying date in response to long-term increases in spring temperatures. These studies have been conducted primarily in Europe and at local scales. If climate change is a large-scale phenomenon, then we should see responses at larger scales and in other regions. We examined the effects of long-term temperature change on the laying dates and clutch sizes of six ecologically diverse species of North American birds using 50 years of nest record data. As predicted, laying dates for most (four of six) species were earlier when spring temperatures were warmer. Over the long-term, laying dates advanced over time for two species (red-winged blackbirds, Agelaius phoeniceus and eastern bluebirds, Sialia sialis). Laying date of song sparrows (Melospiza melodia) also advanced with increasing temperature when the analysis was restricted to eastern populations. Neither laying date nor clutch sizes changed significantly over time in the remaining species (American coot, Fulica americana, killdeer, Charadrius vociferous, and American robin, Turdus migratorius), an unsurprising result given the lack of increase in temperatures over time at nest locations of these species. This study indicates that the relationship between climate change and breeding in birds is variable within and among species. In large-scale analyses of North American birds, four of seven species have shown advances in laying dates with increasing temperature (including song sparrows in the east). These variable responses within and among species highlight the need for more detailed studies across large spatial scales.  相似文献   

9.
The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among‐species differentiation accounts for 35% of the total genetic differentiation (FST = 0.35), and FST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times.  相似文献   

10.
Root hydrocarbons as potential markers for determining species composition   总被引:1,自引:0,他引:1  
Grasslands can be a complex mixture of plant species. A method is described to allow the identification of both roots and shoots of five different grass species, thus permitting greater knowledge about whole plant allocation and competition in mixed pastures. The five species were Lolium perenne, Festuca ovina, Festuca rubra, Poa trivialis and Agrostis capillaris. N‐alkanes with odd‐numbers of carbon atoms in the chains predominate in plants and in the five grass species studied, concentrations of alkanes of chain length of C29, C31 and C33 were highest. Average concentrations of C27‐C33 alkanes in shoots and roots were 187 and 11 mg kg ? 1, respectively. This wide range of values required considerable modifications to the method of analysis, including expressing concentrations on an organic matter basis and scaling‐down the procedure. The n‐alkane concentrations in roots are different from those in shoots and therefore values from shoots cannot be used to predict the composition in roots. Using a canonical variate analysis, all five grass species could be separated using concentrations of C26, C31 and C33 values in the roots. The greatest difference occurred between A. capillaris and the others, whereas discrimination was least between the two Festuca species. Defoliation had contrasting effects on the concentration of a few n‐alkanes, but not in the n‐alkanes used to discriminate between grass species. Alkane analysis shows great potential as a method to quantify the species composition of the root biomass beneath mixed pasture species.  相似文献   

11.
Microsatellite loci are ideal for testing hypotheses relating to genetic segregation at fine spatio‐temporal scales. They are also conserved among closely related species, making them potentially useful for clarifying interspecific relationships between recently diverged taxa. However, mutations at primer binding sites may lead to increased nonamplification, or disruptions that may result in decreased polymorphism in nontarget species. Furthermore, high mutation rates and constraints on allele size may also with evolutionary time, promote an increase in convergently evolved allele size classes, biasing measures of interspecific genetic differentiation. Here, we used next‐generation sequencing to develop microsatellite markers from a shotgun genome sequence of the sub‐Antarctic seabird, the thin‐billed prion (Pachyptila belcheri), that we tested for cross‐species amplification in other Pachyptila and related sub‐Antarctic species. We found that heterozygosity decreased and the proportion of nonamplifying loci increased with phylogenetic distance from the target species. Surprisingly, we found that species trees estimated from interspecific FST provided better approximations of mtDNA relationships among the studied species than those estimated using DC, even though FST was more affected by null alleles. We observed a significantly nonlinear second order polynomial relationship between microsatellite and mtDNA distances. We propose that the loss of linearity with increasing mtDNA distance stems from an increasing proportion of homoplastic allele size classes that are identical in state, but not identical by descent. Therefore, despite high cross‐species amplification success and high polymorphism among the closely related Pachyptila species, we caution against the use of microsatellites in phylogenetic inference among distantly related taxa.  相似文献   

12.
Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge–Tiksi Bay (TIK,= 22), Orulgan Ridge (ORU,= 22), the central part of Verkhoyansk Range (VER,= 15), Suntar‐Khayata Ridge (SKH,= 13), and Momsky Ridge (MOM,= 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified = 2 as the most likely number of ancestral populations. A Neighbor‐Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population—TIK, and maximum values were observed in the most southern population—SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.  相似文献   

13.
Evaluating the relative importance of neutral and adaptive processes as determinants of population differentiation across environments is a central theme of evolutionary biology. We applied the QSTFST comparison flanked by a direct test for local adaptation to infer the role of climate‐driven selection and gene flow in population differentiation of an annual grass Avena sterilis in two distinct parts of the species range, edge and interior, which represent two globally different climates, desert and Mediterranean. In a multiyear reciprocal transplant experiment, the plants of desert and Mediterranean origin demonstrated home advantage, and population differentiation in several phenotypic traits related to reproduction exceeded neutral predictions, as determined by comparisons of QST values with theoretical FST distributions. Thus, variation in these traits likely resulted from local adaptation to desert and Mediterranean environments. The two separate common garden experiments conducted with different experimental design revealed that two population comparisons, in contrast to multi‐population comparisons, are likely to detect population differences in virtually every trait, but many of these differences reflect effects of local rather than regional environment. We detected a general reduction in neutral (SSR) genetic variation but not in adaptive quantitative trait variation in peripheral desert as compared with Mediterranean core populations. On the other hand, the molecular data indicated intensive gene flow from the Mediterranean core towards desert periphery. Although species range position in our study (edge vs. interior) was confounded with climate (desert vs. Mediterranean), the results suggest that the gene flow from the species core does not have negative consequences for either performance of the peripheral plants or their adaptive potential.  相似文献   

14.
Summary We compared ammonium and nitrate nutrition in Eriophorum scheuchzeri and E. vaginatum, two Alaskan sedges that are native to high- and low-fertility sites, respectively. When grown in solution culture, the two species were similar in their kinetics of NH inf4 sup+ NO inf3 sup- absorption: at nitrogen concentrations below 50 M, net NH inf4 sup+ and NO inf3 sup- were absorbed at similar rates, but at higher concentrations, net uptake of NO inf3 sup- was significantly faster than that of NH inf4 sup+ . The two species also showed similar abilities to assimilate NO inf3 sup- . Growth of E. vaginatum under NO inf3 sup- nutrition was only slightly less than that under NH inf4 sup+ . The observed similarities between these species from contrasting edaphic habitats indicate that factors other than tissue-specific rates of nitrogen acquisition and assimilation may underlie local adaptation to soil N fertility. Moreover, the capacity of these species to exploit NO inf3 sup- as a N source supports the view that NO inf3 sup- availability may be significant even in wet, acidic, arctic soils.  相似文献   

15.
Preferred body temperatures (T sel) of ectotherms are important for ecological and evolutionary studies. In lizards, the measurement of T sel is controversial for several reasons, generally related to hypotheses addressing how T sel may evolve in the wild. Although seldom explicitly tested, evolutionary hypotheses of adaptation to local climate require that T sel meets the conditions of natural selection, which include repeatability, heritability and a link to fitness. Here, we investigated repeatability (τ, intra-class correlation coefficient) of T sel at several time-scales using four Cordylid species from heterogeneous thermal habitats. Although there was significant inter-individual variation within days (P < 0.005 in most cases), there was no significant inter-individual variation when calculated across several days (P > 0.05). Repeatability was low in all species investigated (from 0 to 0.482) when compared against other estimates of repeatability of T sel in the literature. Irrespective of how T sel was calculated, it showed inconsistent and variable temporal effects across species. Furthermore, repeatability of T sel did not change with acclimation to laboratory conditions. These data have implications for understanding the evolution of thermoregulation in these and other ectotherms.  相似文献   

16.
Microsatellite variations in Castanopsis species in Japan were examined to clarify the genetic relationships among 25 local populations according to the difference in the number of layers of adaxial epidermis in the leaves. Six microsatellite loci were assayed for 629 seedlings from the populations, and these seedlings were classified into five types according to the state of the leaf epidermis. Remarkable differences in the allele frequency of the six microsatellite loci were observed among these local populations. The coefficients of genetic differentiation, RST, of each locus ranged from 0.209 to 0.388. An unweighted pair-group method (UPGMA) phenogram constructed on the population pairwise RST over the loci revealed three clusters (A–C), and six sub-clusters. These clusters reflected the differences in the occurrence frequency of seedlings in each epidermis type within a population. Our findings suggest that clusters A and C are the local populations dominated by Castanopsis sieboldii and Castanopsis cuspidata, respectively, while local populations of cluster B are composed of the two Castanopsis species and/or include many individuals derived by hybridization. The six sub-clusters were found to reflect the geographic relationship among the populations, suggesting a different process for geographic population dynamics during the postglacial period.  相似文献   

17.
袁野梅  柳隽瑶  高秀丽  薛璟  王仁忠 《生态学报》2022,42(21):8784-8794
为比较针茅(Stipa)植物适应策略,以大尺度梯度下(>1600 km)温带草原主要针茅植物为对象,系统研究了8个样点7种针茅根系生物量、根冠比、解剖结构和生理调节物质的差异及其对环境因子的适应。在由东北至西南的区域上,随降水量下降针茅植物根系的抗旱特征增强或适应策略趋于复杂,不同针茅植物根系对水分变化(或旱季和雨季)有着不同的适应策略。综合分析表明贝加尔针茅(S.baicalensis)、大针茅(S.grandis)及克氏针茅(S.krylovii)(多伦样点)的生长受干旱制约,对降水高度敏感,雨季降水促进其生物量快速积累。沙生针茅(S.glareosa)、短花针茅(S.breviflora)、戈壁针茅(S.gobica)、本氏针茅(S.bungeana)等通过增大根冠比和渗透调节物质累积等途径提高根系吸水和保水能力,抵御干旱胁迫。偏相关分析显示实验区域针茅植物根系性状与降水量和海拔高度存在显著的相关性。  相似文献   

18.
Aim The effect of habitat fragmentation on population genetic structure results from the interaction between species’ life history traits and the particular landscape context, and both components are inherently difficult to tease apart. Here, we compare the genetic (allozyme) structure of four co‐occurring woody species with contrasting life histories to explore how well their response to the same fragmentation process can be predicted from their functional traits. Location A highly fragmented forest landscape located in the lower Guadalquivir catchment, south‐western Spain. Methods We sampled four species (Cistus salviifolius, Myrtus communis, Pistacia lentiscus and Quercus coccifera) from the same 23 forest fragments known to form a representative array of habitat characteristics in the region. We assessed genetic diversity (A, He and Ng) and differentiation (FIS and FST) for each species and explored their potential drivers using a model‐selection approach with four fragment features (size, historical and current connectivity, and stability) as predictor variables. Results Regional‐scale genetic diversity increased from the shortest‐lived to the longest‐lived species, while population differentiation of the self‐compatible species was roughly double that of the three self‐incompatible species. Fragment size was the only feature that did not consistently affect the genetic diversity of local populations across all species. Three species showed signs of being affected by fragmentation, yet each responded differently to the set of fragment features considered. We observed several trends that were at odds with simple life history‐based predictions but could arise from patterns of gene flow and/or local‐scale demographic processes. Main conclusions Our comparative study of various landscape features and species underscores that the same fragmentation process can have very different, and complex, consequences for the population genetic structure of plants. This idiosyncrasy renders generalizations across natural systems very difficult and highlights the need of context‐oriented guidelines for an efficient conservation management of species‐rich landscapes.  相似文献   

19.
物种多样性(SD)与功能多样性(FD)之间存在多种关系,但由于生态系统功能主要由物种的功能属性决定,因而功能多样性对生态系统功能的影响大于物种多样性的影响。但在种间性状差异和物种均匀度这两个构成功能多样性的基本成分中,何者对功能多样性影响更大,并进而决定SD-FD关系尚不明确。通过在高寒矮嵩草(Kobresia humilis)草甸为期6a的刈割(留茬1 cm、3 cm及不刈割)和施肥(尿素7.5 g m~(-2)a~(-1)+磷酸二胺1.8 g m~(-2)a~(-1)、不施肥)控制实验,研究了种间性状差异(33个物种13个性状)和物种均匀度(所有物种)对物种多样性(所有物种)与功能多样性(33个物种13个性状)之间关系的影响。研究结果显示:(1)物种多样性与功能多样性正相关,它们与多性状种间差异负相关,而与物种均匀度正相关。物种均匀度是导致功能多样性变化的主要因素,也是导致SD-FD正相关的原因,这是因为随着物种多样性增加,物种均匀度的增加程度大于多性状种间差异的减少程度,因而功能多样性增加,SD-FD正相关;(2)功能多样性指数(FD_(Rao)和FDis)随物种多样性指数(H')减速递增,表明群落存在一定的功能冗余,且功能冗余随物种多样性的增大而增大,但尚未达到产生SD-FD无相关性的极限H'值;(3)功能多样性对高寒草甸生态系统地上净初级生产力(ANPP)的影响大于物种多样性的影响,二元线性回归显示在同时考虑二者对ANPP的影响时,可排除物种多样性的作用。但由于物种多样性下降或物种丧失引起的物种功能性状丢失或性状空间维度减小将导致功能多样性降低,表明它们之间存在一定互补性,在研究生物多样性与生态系统功能关系时,同时考虑物种多样性和功能多样性的影响仍十分必要。  相似文献   

20.
Harvester ant foraging and plant species distribution in annual grassland   总被引:7,自引:0,他引:7  
R. J. Hobbs 《Oecologia》1985,67(4):519-523
Summary The harvester antVeromessor andrei Mayr is a major seed predator on annual grassland growing on serpentine soil at Jasper Ridge, N. California. Ants forage intensively during morning and evening sessions in areas surrounding nests. Activity is at its most intense in early summer, coinciding with peak seed release for most annual plant species. Ants show strong preferences for seeds of non-dominant species, notablyMicroseris douglasii (DC.) Sch.-Bip., but preferences alter over the season in response to seed availability. Seeds of the dominant annual species,Lasthenia californica DC ex Lindley are not foraged until later in the summer when seeds of other species are less abundant.Seedling densities and species compositions on ant nests differ markedly from surrounding areas with species relative abundances being similar to those found on gopher mounds. An exclosure experiment in areas adjacent to nests indicated that ants significantly reduced the densities of species with preferred seeds. Ants may therefore significantly affect plant distribution and abundance within the serpentine grassland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号