首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The subcellular origin of ceramide signaling in ionizing radiation-triggered apoptosis was investigated using two previously described subclones of the autonomous erythro-myeloblastic cell line TF-1, radio-resistant and -sensitive TF-1-34 and TF-1-33, respectively. We show in nuclei-free lysates and cytoplasts that both cell lines failed to generate ceramide in response to ionizing radiation. Moreover, whereas cytoplasts did respond to anti-Fas stimulation through phosphatidylserine externalization, no effect was observed with ionizing radiation. Only in highly purified nuclei preparations did we observe ceramide generation, neutral sphingomyelinase activation, and apoptotic features (PARP cleavage, nuclear fragmentation, DNA laddering) in TF-1-33, but not in TF-1-34 cells. These observations suggest that nuclear sphingomyelinase and ceramide formation may contribute to ionizing radiation-triggered apoptosis.  相似文献   

2.
After infection of HeLa cells with adenovirus type 2, virus-specific heterogeneous nuclear RNA is quantitatively associated with a higher ordered structure, the nuclear matrix. Analysis of this matrix-associated RNA by S1 nuclease mapping showed that precursors as well as processed messenger RNAs from the late region L4 were present. By irradiation of intact cells with ultraviolet light, proteins tightly associated with heterogeneous nuclear RNA can be induced to cross-link with the RNA. Characterization of the cross-linked RNA-protein complexes showed that all viral polyadenylated RNAs (precursors, products and processing intermediates) could be cross-linked to two host proteins, earlier found to be involved in the association of host-specific heterogeneous nuclear RNA to the nuclear matrix (van Eekelen &; van Venrooij, 1981). Our results thus further support the concept that the nuclear matrix may function in the localization and the structural organization of (viral) heterogeneous nuclear RNA during its processing.  相似文献   

3.
Opening of high conductance permeability transition pores in mitochondria initiates onset of the mitochondrial permeability transition (MPT). The MPT is a causative event, leading to necrosis and apoptosis in hepatocytes after oxidative stress, Ca(2+) toxicity, and ischemia/reperfusion. CsA blocks opening of permeability transition pores and protects cell death after these stresses. In contrast to necrotic cell death which is a consequence of ATP depletion, ATP is required for the development of apoptosis. Reperfusion and the return of normal pH after ischemia initiate the MPT, but the balance between ATP depletion after the MPT and ATP generation by glycolysis determines whether the fate of cells will be apoptotic or necrotic death. Thus, the MPT is a common pathway leading to both necrotic and apoptotic cell death after ischemia/reperfusion.  相似文献   

4.
TRAF family proteins are signal-transducing adapter proteins that interact with the cytosolic domains of tumor necrosis factor (TNF) family receptors. Here we show that TRAF1 (but not TRAF2-6) is cleaved by certain caspases in vitro and during TNF-alpha- and Fas-induced apoptosis in vivo. (160)LEVD(163) was identified as the caspase cleavage site within TRAF1, generating two distinct fragments. Significant enhancement of TNF receptor-1 (CD120a)- and, to a lesser extent, Fas (CD95)-mediated apoptosis was observed when overexpressing the C-terminal TRAF1 fragment in HEK293T and HT1080 cells. The same fragment was capable of potently suppressing TNF receptor-1- and TRAF2-mediated nuclear factor-kappaB activation in reporter gene assays, providing a potential mechanism for the enhancement of TNF-mediated apoptosis. Cell death induced by other death receptor-independent stimuli such as cisplatin, staurosporine, and UV irradiation did not result in cleavage of TRAF1, and overexpression of the C-terminal TRAF1 fragment did not enhance cell death in these cases. TRAF1 cleavage was markedly reduced in cells that contain little procaspase-8 protein, suggesting that this apical protease in the TNF/Fas death receptor pathway is largely responsible. These data identify TRAF1 as a specific target of caspases activated during TNF- and Fas-induced apoptosis and illustrate differences in the repertoire of protease substrates cleaved during activation of different apoptotic pathways.  相似文献   

5.
In the present study, we investigated the dynamic alterations in mitochondrial lipids occurring during Fas- and radiation-induced cell death. Cross-linking of CD-95 on Fas-sensitive Jurkat cells produced rapid increases in two species of mitochondrial phosphatidylglycerol. By 2.5 h, phosphatidylglycerol decreases below basal levels, concomitant with an increase in mitochondrial ceramide. In addition, between 1.5 and 3.0 h after anti-Fas crosslinking, there is a continued loss of mitochondrial cardiolipin. When gamma irradiation was used to induce apoptosis, similar lipid changes occurred, although with somewhat slower kinetics. Fas-resistant Jurkat cells exhibited phosphatidylglycerol as the dominant lipid species in their mitochondria. Following Fas ligation, there is a transient decrease in phosphatidylglycerol, but cardiolipin and ceramide remained unchanged. The high basal levels of PG in Fas-resistant cells and the increase in PG levels in Fas-sensitive cells undergoing apoptosis was determined to be due to increased PGP synthase activity. Thus, critical mitochondrial lipids could potentially serve as novel targets in regulating the apoptotic process.  相似文献   

6.
Tumor necrosis factor (TNF)-α, a homotrimeric, pleiotropic cytokine, is secreted in response to inflammatory stimuli in diseases such as rheumatoid arthritis and inflammatory bowel disease. TNF-α mediates both apoptosis and inflammation, stimulating an inflammatory cascade through the non-canonical pathway of NF-κB activation, leading to increased nuclear RelB and p52. In contrast, the common food additive carrageenan (CGN) stimulates inflammation through both the canonical and non-canonical pathways of NF-κB activation and utilizes the adaptor molecule BCL10 (B-cell leukemia/lymphoma 10). In a series of experiments, colonic epithelial cells and mouse embryonic fibroblasts were treated with TNF-α and carrageenan in order to simulate the possible effects of exposure to dietary CGN in the setting of a TNF-α-mediated inflammatory disease process. A marked increase in secretion of IL-8 occurred, attributable to synergistic effects on phosphorylated NF-κB-inducing kinase (NIK) in the non-canonical pathway. TNF-α induced the ubiquitination of TRAF2 (TNF receptor-associated factor 2), which interacts with NIK, and CGN induced phosphorylation of BCL10, leading to increased NIK phosphorylation. These results suggest that TNF-α and CGN in combination act to increase NIK phosphorylation, thereby increasing activation of the non-canonical pathway of NF-κB activation. In contrast, the apoptotic effects of TNF-α, including activation of caspase-8 and PARP-1 (poly(ADP-ribose) polymerase 1) fragmentation, were markedly reduced in the presence of CGN, and CGN caused reduced expression of Fas. These findings demonstrate that exposure to CGN drives TNF-α-stimulated cells toward inflammation rather than toward apoptotic cell death and suggest that CGN exposure may compromise the effectiveness of anti-TNF-α therapy.  相似文献   

7.
8.
Chicken histone H5 is an H1-like linker histone that is expressed only in nucleated erythrocytes. The histone H5 promoter has binding sites for Sp1 (a high affinity site) and UPE-binding protein, while the 3′ erythroid-specific enhancer has binding sites for Sp1 (one moderate and three weak affinity), GATA-1, and NF1. In this study we investigated whether trans-acting factors that bind to the chicken histone H5 promoter or enhancer are associated with adult chicken immature and mature erythrocyte nuclear matrices. We show that NF1, but not Sp1, GATA-1, or UPE-binding protein, is associated with the internal nuclear matrices of these erythroid cells. Further, we found that a subset of the NF1 family of proteins is bound to the mature erythrocyte nuclear matrix. These results suggest that in chicken erythrocytes NF1 may mediate an interaction between the histone H5 enhancer and the erythroid internal nuclear matrix. NF1 was also present in the internal nuclear matrices of chicken liver and trout liver. The observations of this study provide evidence that NF1 may have a role in a variety of cell types in targeting specific DNA sequences to the nuclear matrix. © 1994 Wiley-Liss, Inc.  相似文献   

9.
10.
The nuclear matrix is a thermolabile cellular structure   总被引:2,自引:0,他引:2       下载免费PDF全文
Heat shock sensitizes cells to ionizing radiation, cells heated in S phase have increased chromosomal aberrations, and both Hsp27 and Hsp70 translocate to the nucleus following heat shock, suggesting that the nucleus is a site of thermal damage. We show that the nuclear matrix is the most thermolabile nuclear component. The thermal denaturation profile of the nuclear matrix of Chinese hamster lung V79 cells, determined by differential scanning calorimetry (DSC), has at least 2 transitions at Tm = 48 degrees C and 55 degrees C with an onset temperature of approximately 40 degrees C. The heat absorbed during these transitions is 1.5 cal/g protein, which is in the range of enthalpies for protein denaturation. There is a sharp increase in 1-anilinonapthalene-8-sulfonic acid (ANS) fluorescence with Tm = 48 degrees C, indicating increased exposure of hydrophobic residues at this transition. The Tm = 48 degrees C transition has a similar Tm to those predicted for the critical targets for heat-induced clonogenic killing (Tm = 46 degrees C) and thermal radiosensitization (Tm = 47 degrees C), suggesting that denaturation of nuclear matrix proteins with Tm = 48 degrees C contribute to these forms of nuclear damage. Following heating at 43 degrees C for 2 hours, Hsc70 binds to isolated nuclear matrices and isolated nuclei, probably because of the increased exposure of hydrophobic domains. In addition, approximately 25% of exogenous citrate synthase also binds, indicating a general increase in aggregation of proteins onto the nuclear matrix. We propose that this is the mechanism for increased association of nuclear proteins with the nuclear matrix observed in nuclei Isolated from heat-shocked cells and is a form of indirect thermal damage.  相似文献   

11.
Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.  相似文献   

12.
Degradation of chromosomal DNA during apoptosis   总被引:13,自引:0,他引:13  
Apoptosis is often accompanied by degradation of chromosomal DNA. CAD, caspase-activated DNase, was identified in 1998 as a DNase that is responsible for this process. In the last several years, mice deficient in the CAD system have been generated. Studies with these mice indicated that apoptotic DNA degradation occurs in two different systems. In one, the DNA fragmentation is carried out by CAD in the dying cells and in the other, by lysosomal DNase II after the dying cells are phagocytosed. Several other endonucleases have also been suggested as candidate effectors for the apoptotic degradation of chromosomal DNA. In this review, we will discuss the mechanism and role of DNA degradation during apoptosis.  相似文献   

13.
Intranuclear lipid metabolism modifications in relation to cell proliferation and/or apoptosis were demonstrated in hepatocytes. The aim of this study was to establish whether nuclear lipid metabolites influence cell function in different experimental models using a rat thyroid cell line (FRTL-5) treated with UV-C radiation. After UV-C irradiation cells proliferate and undergo apoptosis in the presence of thyrotropin, are quiescent and resistant to radiation-induced apoptosis in its absence and finally are proapoptotic for nutrition withdrawal. In nuclei purified from proliferating cells, irradiation stimulates neutral-sphingomyelinase activity and inhibits sphingomyelin-synthase, phosphatidylcholine-specific phospholipase C and phosphatidylinositol-specific phospholipase C activity with a consequent increase in the ceramide/diacylglycerol ratio. This effect is marked in proapoptotic cell nuclei and low in quiescent cell nuclei. In conclusion, UV-C radiation induces apoptosis, modifying nuclear lipid metabolism in relation to the physiological state of cells.  相似文献   

14.
We applied the nuclear DNA Diffusion Assay, described as an accurate tool to estimate apoptotic and necrotic cells [N.P. Singh, A simple method for accurate estimation of apoptotic cells, Exp. Cell Res. 256 (2000) 328-337] to tobacco root and leaf cells. In this assay, isolated nuclei are embedded in an agarose microgel on a microscope slide and low molecular-weight DNA fragments diffuse into the microgel. Exposure of the roots to hydrogen peroxide significantly increased the average nuclear area of isolated nuclei. After 4 and 24 h of recovery, all DNA damage was repaired. The data clearly demonstrate that the manifestation of diffused nuclei upon exposure to hydrogen peroxide is not the result of non-repairable apoptotic or necrotic DNA fragmentation, but represents repairable genotoxin-induced DNA damage. In contrast, treatment with the alkylating agent ethyl methanesulphonate (EMS) followed by 24 h of recovery produced a significant increase in the average nuclear area. The contribution of apoptosis to this increase cannot be excluded. Heat treatment of leaves at 50 degrees C for 1-15 min leading to necrosis, and treatment of isolated nuclei with DNase-I, which digests DNA to nucleosome-sized fragments as during apoptosis, also led to a dose-dependent increase in the nuclear area. The use of different fluorochromes (ethidium bromide, DAPI or YOYO-1) for DNA staining yielded similar results in the DNA Diffusion Assay. As all types and sizes of diffused nuclei were observed after EMS and hydrogen peroxide treatments, we were unable to differentiate, on the basis of the structure of the nuclei, between apoptotic or necrotic DNA fragmentation and other types of genotoxin-induced DNA damage in plants.  相似文献   

15.
16.
We have assessed whether antigenic proteins associated with small nuclear ribonucleoprotein particles (snRNP) are associated with the nuclear matrix. Immunofluorescence studies showed that a subset of these particles (those reactive with anti-Sm antisera) were associated with the nuclear matrix, while a different set of particles (those reactive with anti-La antisera) were not associated with the nuclear matrix. Immunoprecipitation experiments showed that three specific polypeptide components of the snRNP reactive with the anti-Sm antisera were significantly enriched in nuclear matrix proteins.  相似文献   

17.
The IL-1 receptor-associated kinase (IRAK/mPLK) is linked to the regulation of nuclear factor-kappaB (NF-kappaB)-dependent gene expression. Here we describe a novel binding partner of IRAK/mPLK that we term SIMPL (signaling molecule that associates with the mouse pelle-like kinase). Overexpression of SIMPL leads to the activation of NF-kappaB-dependent promoters, and inactivation of SIMPL inhibits IRAK/mPLK as well as tumor necrosis factor receptor type I-induced NF-kappaB activity. Dominant inhibitory alleles of IkappaB kinase (IKKalpha or IKKbeta) block the activation of NF-kappaB by IRAK/mPLK and SIMPL. Furthermore, SIMPL binds IRAK/mPLK and the IKKs in vitro and in vivo. In the presence of antisense mRNA to SIMPL, the physical association between IRAK/mPLK and IKKbeta but not IRAK/mPLK and IKKalpha is greatly diminished. Moreover, dominant-negative SIMPL blocks IKKalpha- or IKKbeta-induced NF-kappaB activity. These results lead us to propose a model in which SIMPL functions to regulate NF-kappaB activity by linking IRAK/mPLK to IKKbeta/alpha-containing complexes.  相似文献   

18.
19.
We compared the protein composition of the nuclear matrix isolated from several murine embryonal carcinoma cells and mature tissues by two-dimensional gel electrophoresis. Two nuclear matrix fractions were investigated: the "peripheral" nuclear matrix (matrix proteins that remain insoluble after reduction), and the "internal" nuclear matrix (matrix proteins released by reduction). The two subfractions have completely different protein compositions. Although numerous differences in nuclear matrix protein composition among different cell types were observed, a limited set of polypeptides common to all mouse cell types was identified. A majority of these common proteins was also present in cells from other mammalian species (i.e. rat and human). For this set of proteins, we coin the term "minimal matrix." As expected, lamin B, known to be expressed throughout differentiation, is part of the common set of peripheral nuclear matrix proteins. Lamins A and C are not because these proteins were absent from undifferentiated embryonal carcinoma cells. Since these common nuclear matrix proteins occur in all mammalian nuclear matrices analyzed so far, it is likely that they have a basic role in nuclear organization and function.  相似文献   

20.
Kim JJ  Lee MY 《BMB reports》2011,44(12):782-786
Aberrant GAPDH expression following S-nitrosoglutathione (GSNO) treatment was compared in HepG2 cells, which express functional p53, and Hep3B cells, which lack functional p53. The results of Western blotting and fluorescent immunocytochemistry revealed that nuclear translocation and accumulation of GAPDH occur in both HepG2 and Hep3B cells. This finding suggests that p53 may not be necessary for the GSNO-induced translocation of GAPDH to the nucleus during apoptotic cell death in hepatoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号