首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UDP-glucuronosyltransferase (UGT) isozymes detoxify metabolites, drugs, toxins, and environmental chemicals via conjugation to glucuronic acid. Based on the extended UGT1 locus combined with Northern blot analysis and in situ hybridization, we determined the distribution of UGT1A1 and UGT1A7 through UGT1A10 mRNAs and found them for the first time segmentally distributed in the mucosal epithelia layer of the gastrointestinal tract. Biochemically, recombinant isozymes exhibited pH optima of 5.5, 6.4, 7.6, 8.5, and/or a broad pH range, and activities were found to be unaffected or progressively inhibited by increasing substrate concentrations after attaining Vmax for certain chemicals. Under different optimal conditions, all exhibited wide substrate selections for dietary and environmentally associated chemicals. Evidence also suggests tandem effects of isozymes in the time for completion of reactions when comparing short- and long-term incubations. Moreover, treatment of colon cells with certain diet-associated constituents, curcumin and nordihydroguaiaretic acid, reversibly targets UGTs causing inhibition without affecting protein levels; there is no direct inhibition of control UGT using curcumin as substrate in the in vitro assay. In summary, we demonstrate that UGTs are located in gastrointestinal mucosa, have vast overlapping activities under differential optimal conditions, and exhibit marked sensitivity to certain dietary substrates/constituents, representing a first comprehensive study of critical properties concerning glucuronidating isozymes in alimentary tissues. Additionally, the highly dynamic, complex, and variable properties necessarily impact absorption of ingested chemicals and therapeutic drugs.  相似文献   

2.
Our discovery of rapid down-regulation of human bilirubin UDP-glucuronosyltransferase (UGT) in colon cell lines that was transient and irreversible following curcumin- and calphostin-C-treatment, respectively, suggested phosphorylation event(s) were involved in activity. Likewise, bilirubin-UGT1A1 expressed in COS-1 cells was inhibited by curcumin and calphostin-C. Because calphostin-C is a highly specific protein kinase C (PKC) inhibitor, we examined and found 4 to 5 predicted PKC phosphorylation sites in 11 UGTs examined. UGT1A1 incorporated [33P]orthophosphate, which was inhibited by calphostin-C. Also triple mutant, T75A/T112A/S435G-UGT1A1, at predicted PKC sites failed to incorporate [33P]orthophosphate. Individual or double mutants exhibited dominant-negative, additive, or no effect, while the triple mutant retained 10-15% activity towards bilirubin and two xenobiotics. Compared to wild-type, S435G and T112A/S435G shifted pH-optimum for eugenol, but not for bilirubin or anthraflavic acid, toward alkaline and acid conditions, respectively. This represents the first evidence that a UGT isozyme requires phosphorylation for activity.  相似文献   

3.
4.
Finding UDP-glucuronosyltransferases (UGT) require protein kinase C-mediated phosphorylation is important information that allows manipulation of this critical system. UGTs glucuronidate numerous aromatic-like chemicals derived from metabolites, diet, environment and, inadvertently, therapeutics to reduce toxicities. As UGTs are inactivated by downregulating PKCs with reversibly-acting dietary curcumin, we determined the impact of gastro-intestinal glucuronidation on free-drug uptake and efficacy using immunosuppressant, mycophenolic acid (MPA), in mice. Expressed in COS-1 cells, mouse GI-distributed Ugt1a1 glucuronidates curcumin and MPA and undergoes irreversibly and reversibly dephosphorylation by PKC-specific inhibitor calphostin-C and general-kinase inhibitor curcumin, respectively, with parallel effects on activity. Moreover, oral curcumin-administration to mice reversibly inhibited glucuronidation in GI-tissues. Finally, successive oral administration of curcumin and MPA to antigen-treated mice increased serum free MPA and immunosuppression up to 9-fold. Results indicate targeted inhibition of GI glucuronidation in mice markedly improved free-chemical uptake and efficacy using MPA as a model.  相似文献   

5.
The role of protein kinase C (PKC) isoforms in the neural cell adhesion molecule (NCAM)-mediated neurite outgrowth was tested using a co-culture system consisting of fibroblasts with or without NCAM expression upon which either primary cerebellar granular neurones (CGN) or pheochromocytoma (PC12-E2) cells were grown. The latter transiently expressed various PKC isoforms and domains derived from selected PKCs. PKC inhibitors of various specificity inhibited NCAM-stimulated neuritogenesis from CGN, indicating that PKC is involved in this process. Moreover, stimulation by the NCAM-mimetic peptide, C3d, elicited phosphorylation of PKC in CGN. Expression of kinase-deficient forms of PKCalpha, betaI and betaII blocked NCAM-mediated neurite extension, but had no effect on nerve growth factor (NGF)-mediated neurite outgrowth. Expression of two PKCepsilon constructs: (i) a fragment from PKCepsilon encompassing the pseudosubstrate, the C1a domain (including the actin-binding site, ABS), and parts of the V3 region, or (ii) the PKCepsilon-specific ABS blocked NCAM-mediated neurite extension in both cases. These two constructs also partially inhibited NGF-stimulated neuritogenesis indicating that PKCepsilon is a positive regulator of both NCAM- and NGF-mediated differentiation. We suggest that PKCepsilon is a common downstream mediator for several neuritogenic factors, whereas one or more conventional PKCs are specifically involved in NCAM-stimulated neurite outgrowth.  相似文献   

6.
7.
Eight human liver UDP-glucuronosyltransferases (UGTs) were expressed in baculovirus-infected insect cells as fusion proteins carrying a short C-terminal extension that ends with 6 histidine residues (His tag). The activity of recombinant UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT2B4, UGT2B7, and UGT2B15 was almost fully inhibited by 0.2% Triton X-100. In the case of UGT1A9, however, glucuronidation of alpha-naphthol and scopoletin was resistant to such inhibition, whereas glucuronidation of entacapone and several other aglycones was sensitive. His-tagged UGT1A9 was purified by immobilized metal-chelating chromatography (IMAC). Purified UGT1A9 glucuronidated scopoletin at a high rate, whereas its glucuronidation activity toward entacapone was low and largely dependent on phospholipid addition. Recombinant UGT1A9 in which the His tag was replaced by hemagglutinin antigenic peptide (HA tag) was also prepared. Insect cells were co-infected with baculoviruses encoding both HA-tagged and His-tagged UGT1A9. Membranes from the co-infected cells, or a mixture of membranes from separately infected cells, were subjected to detergent extraction and IMAC, and the resulting fractions were analyzed for the presence of each type of UGT1A9 using tag-specific antibodies. In the case of separate infection, the HA-tagged UGT1A9 did not bind to the column. When co-infected with His-tagged UGT1A9, however, part of the HA-tagged enzyme was bound to the column and was eluted by imidazole concentration gradient together with the His-tagged UGT1A9, suggesting the formation of stable dimers that contain one His-tagged and one HA-tagged UGT1A9 monomers.  相似文献   

8.
9.
Although estrogens are neuroprotective in a variety of neuroprotection models, the precise underlying mechanisms are currently not well understood. Here, we examined the role of protein kinase C (PKC) in mediating estrogen-induced neuroprotection in the HT-22 immortalized hippocampal cell line. The neuroprotection model utilized calcein fluorescence to quantitate cell viability following glutamate insults. 17beta-Estradiol (betaE2) protected HT-22 cells when treatment was initiated before or after the glutamate insult. The inhibition of PKC by bis-indolylmaleimide mimicked and enhanced betaE2-induced neuroprotection. In contrast, the inhibition of specific PKC isozymes (alpha and beta) by Go6976, inhibition of 1-phosphatidylinositol 3 kinase by wortmannin, or inhibition of protein kinase A by H-89, did not alter cell viability, suggesting a specific involvement of PKC in an isozyme-dependent manner. We further examined whether estrogen interacts with PKC in a PKC isozyme-specific manner. Protein levels and activity of PKC isozymes (alpha, delta, epsilon, and zeta) were assessed by western blot analysis and radiolabeled phosphorylation assays respectively. Among the isozymes tested, betaE2 altered only PKCepsilon; it reduced the activity and membrane translocation of PKCepsilon in a manner that correlated with its protection against glutamate toxicity. Furthermore, betaE2 reversed the increased activity of membrane PKCepsilon induced by glutamate. These data suggest that the neuroprotective effects of estrogens are mediated in part by inhibition of PKCepsilon activity and membrane translocation.  相似文献   

10.
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.  相似文献   

11.
Because human prostate-distributed UDP-glucuronosyltransferase (UGT) 2B15 metabolizes 5α-dihydrotestosterone (DHT) and 3α-androstane-5α,17β-diol metabolite, we sought to determine whether 2B15 requires regulated phosphorylation similar to UGTs already analyzed. Reversible down-regulation of 2B15-transfected COS-1 cells following curcumin treatment and irreversible inhibition by calphostin C, bisindolylmaleimide, or röttlerin treatment versus activation by phorbol 12-myristate 13-acetate indicated that 2B15 undergoes PKC phosphorylation. Mutation of three predicted PKC and two tyrosine kinase sites in 2B15 caused 70–100 and 80–90% inactivation, respectively. Anti-UGT-1168 antibody trapped 2B15-His-containing co-immunoprecipitates of PKCα in 130–140- and >150-kDa complexes by gradient SDS-PAGE analysis. Complexes bound to WT 2B15-His remained intact during electrophoresis, whereas 2B15-His mutants at phosphorylation sites differentially dissociated. PKCα siRNA treatment inactivated >50% of COS-1 cell-expressed 2B15. In contrast, treatment of 2B15-transfected COS-1 cells with the Src-specific activator 1,25-dihydroxyvitamin D3 enhanced activity; treatment with the Src-specific PP2 inhibitor or Src siRNA inhibited >50% of the activity. Solubilized 2B15-His-transfected Src-free fibroblasts subjected to in vitro [γ-33P]ATP-dependent phosphorylation by PKCα and/or Src, affinity purification, and SDS gel analysis revealed 2-fold more radiolabeling of 55–58-kDa 2B15-His by PKCα than by Src; labeling was additive for combined kinases. Collectively, the evidence indicates that 2B15 requires regulated phosphorylation by both PKCα and Src, which is consistent with the complexity of synthesis and metabolism of its major substrate, DHT. Whether basal cells import or synthesize testosterone for transport to luminal cells for reduction to DHT by 5α-steroid reductase 2, comparatively low-activity luminal cell 2B15 undergoes a complex pattern of regulated phosphorylation necessary to maintain homeostatic DHT levels to support occupation of the androgen receptor for prostate-specific functions.  相似文献   

12.
Jolly-Tornetta C  Wolf BA 《Biochemistry》2000,39(25):7428-7435
Cleavage of amyloid precursor protein (APP) by beta-secretase generates beta-amyloid (Abeta), the major component of senile plaques in Alzheimer's disease. Cleavage of APP by alpha-secretase prevents Abeta formation, producing nonamyloidogenic APP products. Protein kinase C (PKC) has been shown to regulate APPs secretion, and PKCalpha and PKCepsilon have been implicated in APPs secretion in fibroblasts. This study examined the PKC isoform involved in regulated APPs secretion in human NT2N neurons and in CHO cells stably expressing APP(695). Inhibition of PMA-induced APPs secretion with the PKC inhibitors Calphostin C and GF109203X demonstrated that PKC is involved in PMA-regulated APPs secretion in NT2N cells. The specific PKC isoforms present in NT2N and CHO695 cells were identified, and PKCalpha and PKCepsilon were found to translocate from cytosol to membranes in NT2N and CHO695 cells. Translocation of PKC to the membrane allows for activation of the enzyme, as well as for positioning of the enzyme close to its substrate. Long-term PMA treatment led to complete downregulation of PKCalpha in NT2N cells and to downregulation of PKCalpha and PKCepsilon in CHO695 cells. PKCalpha downregulation in the NT2N cells resulted in loss of PMA-regulated APPs secretion and a substantial reduction in constitutive APPs secretion. Downregulation of PKCalpha and PKCepsilon in CHO695 cells resulted in loss of PMA-regulated APPs secretion; however, constitutive APPs secretion was unaffected. These findings suggest that PKCalpha is involved in PMA-regulated APPs secretion in NT2N cells and PKCalpha and/or PKCepsilon is involved in PMA-regulated APPs secretion in CHO695 cells.  相似文献   

13.
Mammary gland-distributed and ER-bound UDP-glucuronosyltransferase (UGT)-2B7 metabolizes genotoxic catechol-estrogens (CE) associated with breast cancer initiation. Although UGT2B7 has 3 PKC- and 2 tyrosine kinase (TK)-sites, its inhibition by genistein, herbimycin-A and PP2 with parallel losses in phospho-tyrosine and phospho-Y438-2B7 content indicated it requires tyrosine phosphorylation, unlike required PKC phosphorylation of UGT1A isozymes. 2B7 mutants at PKC-sites had essentially normal activity, while its TK-sites mutants, Y236F- and Y438F-2B7, were essentially inactive. Overexpression of regular or active Src, but not dominant-negative Src, in 2B7-transfected COS-1 cells increased 2B7 activity and phospho-Y438-2B7 by 50%. Co-localization of 2B7 and regular SrcTK in COS-1 cells that was dissociated by pretreatment with Src-specific PP2-inhibitor provided strong evidence Src supports 2B7 activity. Consistent with these findings, evidence indicates an appropriate set of ER proteins with Src-homology binding-domains, including 2B7 and well-known multi-functional Src-engaged AKAP12 scaffold, supports Src-dependent phosphorylation of CE-metabolizing 2B7 enabling it to function as a tumor suppressor.  相似文献   

14.
The effects of a high concentration of glucose on the insulin receptor-down signaling were investigated in human hepatoma (HepG2) cells in vitro to delineate the molecular mechanism of insulin resistance under glucose toxicity. Treatment of the cells with high concentrations of glucose (15-33 mm) caused phosphorylation of serine residues of the insulin receptor substrate 1 (IRS-1), leading to reduced electrophoretic mobility of it. The phosphorylation of IRS-1 with high glucose treatment was blocked only by protein kinase C (PKC) inhibitors. The high glucose treatment attenuated insulin-induced association of IRS-1 and phosphatidylinositol 3-kinase and insulin-stimulated phosphorylation of Akt. A metabolic effect of insulin, stimulation of glycogen synthesis, was also inhibited by the treatment. In contrast, insulin-induced association of Shc and Grb2 was not inhibited. Treatment of the cells with high glucose promoted the translocation of PKCepsilon and PKCdelta from the cytosol to the plasma membrane but not that of other PKC isoforms. Finally, PKCepsilon and PKCdelta directly phosphorylated IRS-1 under cell-free conditions. We conclude that a high concentration of glucose causes phosphorylation of IRS-1, leading to selective attenuation of metabolic signaling of insulin. PKCepsilon and PKCdelta are involved in the down-regulation of insulin signaling, and they may lie in a pathway regulating the phosphorylation of IRS-1.  相似文献   

15.
16.
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.  相似文献   

17.
Glucuronide conjugation of xenobiotics containing a carboxylic acid moiety represents an important metabolic pathway for these compounds in humans. Several human UDP-glucuronosyltransferases (UGTs) have been shown to catalyze the formation of acyl-glucuronides, including UGT2B7, UGT1A3, and UGT1A9. In this study, recombinant expressed UGT isoforms were investigated with many structurally related carboxylic acid analogues, and the UGT rank order for catalyzing the glucuronidation of carboxylic acids was UGT2B7?UGT1A3 approximately UGT1A9. Despite being a poor substrate with UGT1A3, coumarin-3-carboxylic acid was not a substrate for any other UGT isoform tested in this study, suggesting that it could be a specific substrate for UGT1A3. Interestingly, UGT1A7 and UGT1A10 also react with several carboxylic acid aglycones. Kinetic analysis showed that UGT2B7 exhibits much higher glucuronidation efficiency (Vmax/Km) with ibuprofen, ketoprofen, and others, compared to UGT1A3. These data indicate that UGT2B7 could be the major isoform involved in the glucuronidation of carboxylic acid compounds in humans.  相似文献   

18.
The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the detoxification of carcinogens as well as clearance of anti-cancer drugs. In humans, 19 UGT family members have been identified and are expressed in a tissue specific manner throughout the body. However, the UGTs have not been previously characterized in melanocytes or melanoma. In the present study, UGT2B7, UGT2B10, and UGT2B15 were identified as being normally expressed in human melanocytes. The same three UGT family members were also expressed in the primary melanoma cell line WM115. No UGT expression was detected in another primary melanoma cell line, WM3211, or in any metastatic melanoma cell line examined. These results suggest that UGT expression is lost during melanoma progression. Treatment of WM3211 or metastatic melanoma cell lines with anti-cancer agents (including vemurafenib) induced expression of UGT2B7, UGT2B10 and UGT2B15 demonstrating that melanoma cells retain the ability to re-express these same three UGTs. The corresponding increase in glucuronidation activity in melanoma cells following anti-cancer treatment was also observed. Furthermore, knockdown of UGT2B7 in WM115 cells sensitized these cells to treatment by adriamycin and epirubicin indicating that UGT2B7 is involved in resistance to these drugs. However, knockdown of UGT2B7 had no effect on temozolomide toxicity. Taken together, these results clearly demonstrate a role for UGTs in melanoma etiology. Since the UGTs are drug metabolism enzymes, we propose that re-expression of the UGTs constitutes a previously unsuspected mechanism for intratumoral drug resistance in melanoma.  相似文献   

19.
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.  相似文献   

20.
The cell cycle is exquisitely controlled by multiple sequential regulatory inputs to ensure fidelity. Here we demonstrate that the final step in division, the physical separation of daughter cells, is controlled by a member of the PKC gene superfamily. Specifically, we have identified three phosphorylation sites within PKCepsilon that control its association with 14-3-3. These phosphorylations are executed by p38 MAP kinase (Ser 350), GSK3 (Ser 346) and PKC itself (Ser 368). Integration of these signals is essential during mitosis because mutations that prevent phosphorylation of PKCepsilon and/or PKCepsilon binding to 14-3-3 also cause defects in the completion of cytokinesis. Using chemical genetic and dominant-negative approaches it is shown that selective inhibition of PKCepsilon halts cells at the final stages of separation. This arrest is associated with persistent RhoA activation at the midbody and a delay in actomyosin ring dissociation. This study therefore identifies a new regulatory mechanism that controls exit from cytokinesis, which has implications for carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号