首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na(+)/H(+)-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na(+)-dependent processes to acid extrusion, 2) sensitivity to Na(+)/H(+) exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pH(i)) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na(+) concentration ([Na(+)](o)) during pH(i) recovery decreased H(+) efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na(+). The Na(+)/H(+) exchange inhibitors ethylisopropylamiloride and amiloride inhibited H(+) efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na(+)](o) and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na(+)/H(+) exchange by isoforms NHE1, NHE2, and NHE3.  相似文献   

2.
3.
To identify important amino acid residues involved in intracellular pH (pH(i)) sensing of Na(+)/H(+) exchanger 1, we produced single-residue substitution mutants in the region of the exchanger encompassing the putative 11th transmembrane segment (TM11) and its adjacent intracellular (intracellular loop (IL) 5) and extracellular loops (extracellular loop 6). Substitution of Arg(440) in IL5 with other residues except positively charged Lys caused a large shift in pH(i) dependence of (22)Na(+) uptake to an acidic side, whereas substitution of Gly(455) or Gly(456) within the highly conserved glycine-rich sequence of TM11 shifted pH(i) dependence to an alkaline side. The observed alkaline shift was larger with substitution of Gly(455) with residues with increasing sizes, suggesting the involvement of the steric effect. Interestingly, mutation of Arg(440) (R440D) abolished the ATP depletion-induced acidic shift in pH(i) dependence of (22)Na(+) uptake as well as the cytoplasmic alkalinization induced by various extracellular stimuli, whereas with that of Gly(455) (G455Q) these functions were preserved. These mutant exchangers did not alter apparent affinities for extracellular transport substrates Na(+) and H(+) and the inhibitor 5-(N-ethyl-N-isopropyl)amiloride. These results suggest that positive charge at Arg(440) is required for normal pH(i) sensing, whereas mutation-induced perturbation of the TM11 structure may be involved in the effects of Gly mutations. Thus, both Arg(440) in IL5 and Gly residues in the conserved segment of TM11 appear to constitute important elements for proper functioning of the putative "pH(i) sensor" of Na(+)/H(+) exchanger 1.  相似文献   

4.
The regulation of intracellular pH (pH(i)) in colonocytes of the rat proximal colon has been investigated using the pH-sensitive dye BCECF and compared with the regulation of pH(i) in the colonocytes of the distal colon. The proximal colonocytes in a HEPES-buffered solution had pH(i)=7.24+/-0.04 and removal of extracellular Na(+) lowered pH(i) by 0.24 pH units. Acid-loaded colonocytes by an NH(3)/NH(4)(+) prepulse exhibited a spontaneous recovery that was partially Na(+)-dependent and could be inhibited by ethylisopropylamiloride (EIPA). The Na(+)-dependent recovery rate was enhanced by increasing the extracellular Na(+) concentration and was further stimulated by aldosterone. In an Na(+)- and K(+)-free HEPES-buffered solution, the recovery rate from the acid load was significantly stimulated by addition of K(+) and this K(+)-dependent recovery was partially blocked by ouabain. The intrinsic buffer capacity of proximal colonocytes at physiological pH(i) exhibited a nearly 2-fold higher value than in distal colonocytes. Butyrate induced immediate colonocyte acidification that was smaller in proximal than in distal colonocytes. This acidification was followed by a recovery phase that was both EIPA-sensitive and -insensitive and was similar in both groups of colonocytes. In a HCO(3)(-)/CO(2)-containing solution, pH(i) of the proximal colonocytes was 7.20+/-0.04. Removal of external Cl(-) caused alkalinization that was inhibited by DIDS. The recovery from an alkaline load induced by removal of HCO(3)(-)/CO(2) from the medium was Cl(-)-dependent, Na(+)-independent and blocked by DIDS. Recovery from an acid load in EIPA-containing Na(+)-free HCO(3)(-)/CO(2)-containing solution was accelerated by addition of Na(+). Removal of Cl(-) inhibited the effect of Na(+). In summary, the freshly isolated proximal colonocytes of rats express Na(+)/H(+) exchanger, H(+)/K(+) exchanger ((H(+)-K(+))-ATPase) and Na(+)-dependent Cl(-)/HCO(3)(-) exchanger that contribute to acid extrusion and Na(+)-independent Cl(-)/HCO(3)(-) exchanger contributing to alkali extrusion. All of these are likely involved in the regulation of pH(i) in vivo. Proximal colonocytes are able to maintain a more stable pH(i) than distal cells, which seems to be facilitated by their higher intrinsic buffer capacity.  相似文献   

5.
The mechanisms of intracellular pH (pH(i)) regulation were studied in hepatocytes isolated from three species of teleost: rainbow trout (Oncorhynchus mykiss), black bullhead (Ameiurus melas) and American eel (Anguilla rostrata). Intracellular pH was monitored over time using the pH-sensitive fluorescent dye BCECF in response to acid loading under control conditions and in different experimental media containing either low Na(+) or Cl(-) concentrations, the Na(+)-H(+) exchanger blocker amiloride or the blocker of the V-type H(+)-ATPase, bafilomycin A(1). In trout and bullhead hepatocytes, recovery to an intracellular acid load occurred principally by way of a Na(+)-dependent amiloride-sensitive Na(+)-H(+) exchanger. In eel hepatocytes, the Na(+)-H(+) exchanger did not contribute to recovery to an acid load though evidence suggests that it is present on the cell membrane and participates in the maintenance of steady-state pH(i). The V-type H(+)-ATPase did not participate in recovery to an acid load in any species. A Cl(-)-HCO(3)(-) exchanger may play a role in recovery to an acid load in eel hepatocytes by switching off and retaining base that would normally be tonically extruded. Thus, it is clear that hepatocytes isolated from the three species are capable of regulating pH(i), principally by way of a Na(+)-H(+) exchanger and a Cl(-)-HCO(3)(-) exchanger, but do not exploit identical mechanisms for pH(i) recovery. J. Exp. Zool. 284:361-367, 1999.  相似文献   

6.
The mechanism of apical Na(+)-dependent H(+) extrusion in colonic crypts is controversial. With the use of confocal microscopy of the living mouse distal colon loaded with BCECF or SNARF-5F (fluorescent pH sensors), measurements of intracellular pH (pH(i)) in epithelial cells at either the crypt base or colonic surface were reported. After cellular acidification, the addition of luminal Na(+) stimulated similar rates of pH(i) recovery in cells at the base of distal colonic crypts of wild-type or Na(+)/H(+) exchanger isoform 2 (NHE2)-null mice. In wild-type crypts, 20 microM HOE694 (NHE2 inhibitor) blocked 68-75% of the pH(i) recovery rate, whereas NHE2-null crypts were insensitive to HOE694, the NHE3-specific inhibitor S-1611 (20 microM), or the bicarbonate transport inhibitor 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS; 1 mM). A general NHE inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA; 20 microM), inhibited pH(i) recovery in NHE2-null mice (46%) but less strongly than in wild-type mice (74%), suggesting both EIPA-sensitive and -insensitive compensatory mechanisms. Transepithelial Na(+) leakage followed by activation of basolateral NHE1 could confound the outcomes; however, the rates of Na(+)-dependent pH(i) recovery were independent of transepithelial leakiness to lucifer yellow and were unchanged in NHE1-null mice. NHE2 was immunolocalized on apical membranes of wild-type crypts but not NHE2-null tissue. NHE3 immunoreactivity was near the colonic surface but not at the crypt base in NHE2-null mice. Colonic surface cells from wild-type mice demonstrated S1611- and HOE694-sensitive pH(i) recovery in response to luminal sodium, confirming a functional role for both NHE3 and NHE2 at this site. We conclude that constitutive absence of NHE2 results in a compensatory increase in a Na(+)-dependent, EIPA-sensitive acid extruder distinct from NHE1, NHE3, or SITS-sensitive transporters.  相似文献   

7.
The maintenance of chondrocyte pH is an important parameter controlling cartilage matrix turnover rates. Previous studies have shown that, to varying degrees, chondrocytes rely on Na(+)/H(+) exchange to regulate pH. HCO(3)(-)-dependent buffering and HCO(3)(-)-dependent acid-extrusion systems seem to play relatively minor roles. This situation may reflect minimal carbonic anhydrase activity in cartilage cells. In the present study, the pH regulation of the human chondrocyte cell line, C-20/A4 has been characterised. Intracellular pH (pH(i)) was measured using the H(+)-sensitive fluoroprobe BCECF. In solutions lacking HCO(3)(-)/CO(2), pH(i) was approximately 7.5, and the recovery from intracellular acidification was predominantly mediated by a Na(+)-dependent, amiloride- and HOE 694-sensitive process. A small additional component which was sensitive to chloro-7-nitrobenz-2-oxa-1,3-diazole, an inhibitor of the V-type H(+)-ATPase, was also apparent. In solutions containing HCO(3)(-)/CO(2), pH(i) was approximately 7.2. Comparison of buffering capacity in the two conditions showed that this variable was not significantly augmented in HCO(3)(-)/CO(2)-containing media. The recovery from intracellular acidification was more rapid in the presence of HCO(3)(-)/CO(2), although under these conditions it was again largely dependent on Na(+) ions and inhibited by amiloride and HOE 694. A small component was inhibited by SITS, although this effect did not reach the level of statistical significance. These findings indicate that HCO(3)(-)-dependent processes play only a minimal role in pH regulation in C-20/A4 chondrocytes. pH regulation instead relies heavily on the Na(+)/H(+) exchanger together with a H(+)-ATPase. The absence of extrinsic (HCO(3)(-)/CO(2)) buffering is likely to reflect the low levels of carbonic anhydrase in these cells. In addition to providing fundamental information about a widely-used cell line, these findings support the contention that the unusual nature of pH regulation in chondrocytes reflects the paucity of carbonic anhydrase activity in these cells.  相似文献   

8.
Although Zn(2+) homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn(2+) concentration ([Zn(2+) ](i)) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn(2+)](i) and intracellular Ca(2+) concentration were monitored simultaneously using FluoZin-3 and Fura-2FF, and intracellular pH (pH(i)) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na(+)-free conditions (Na(+) substituted with N-methyl-D-glucamine(+)) caused Ca(2+) influx, pH(i) drop, and Zn(2+) release from intracellular stores. Experimental maneuvers resulting in a pH(i) increase during Glu/Gly applications, such as stimulation of Na(+) -dependent pathways of H(+) efflux, forcing H(+) efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn(2+)](i) elevations. In the absence of Na(+), the rate of [Zn(2+)](i) decrease could be correlated with the rate of pH(i) increase. In the presence of Na(+), the rate of [Zn(2+) ](i) decrease was about twice as fast as expected from the rate of pH(i) elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn(2+) ](i) elevations and that Na(+) counteracts the latter by promoting pH(i)-dependent and pH(i)-independent mechanisms of cytosolic Zn(2+) clearance.  相似文献   

9.
The mechanisms of tumor promotion in liver by various xenobiotics of diverse structure are not well understood. However, these tumor promoters share the ability to exert growth-stimulatory effects on hepatocytes. Our laboratory has been utilizing normal rat hepatocytes under defined conditions of primary cultures, to investigate growth-stimulatory actions of liver tumor promoters. We have shown that most, if not all, of the liver tumor promoters tested stimulate hepatocyte DNA synthesis when added in combination with epidermal growth factor (EGF), insulin, and glucocorticoids. In the present study, we sought evidence for the role of the Na(+)/H(+) antiporter and cytoplasmic alkalinization in the direct growth-stimulatory actions of tumor promoters on hepatocytes. Hepatocytes cultured under conditions (bicarbonate-buffered medium) where intracellular pH (pH(i)) was independent of extracellular pH (pH(e)), EGF- and insulin-stimulated rates of DNA synthesis were unaffected by modest changes in pH(e). However, under conditions (HEPES-buffered medium) where pH(i) varied in a linear fashion with pH(e), rates of EGF- and insulin-stimulated DNA synthesis were highly dependent on pH(e). Similarly, 12-O-tetradecanoylphorbol-13-acetate (TPA) and alpha-hexachlorocyclohexane (HCH)-stimulated DNA synthesis were pH(e)-dependent but were stimulatory over different pH(e) ranges, suggesting that these promoters may act by distinct mechanisms. Chemicals that are capable of inducing rapid cytoplasmic alkalinization, ammonium chloride (1 and 15 mM) and monensin (0.5 microM), were found to stimulate hepatocyte DNA synthesis. The role of the Na(+)/H(+) antiport in controlling pH(i) of hepatocytes was demonstrated by artificially acidifying 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl (BCECF)-loaded isolated hepatocytes with 20 mM sodium acetate and the use of specific inhibitors. Amiloride and its analogues inhibited pH(i) recovery from the acid load in a dose dependent manner and the relative potency of these inhibitors paralleled their K(i) values for the Na(+)/H(+) antiport. At concentrations that stimulate hepatocyte DNA synthesis, some liver tumor promoters phenobarbital (PB) and HCH, were found to cause a rapid rise pH(i) in isolated hepatocytes which was sensitive to amiloride and its analogues. Taken together, our data suggest that activation of Na(+)/H(+) antiport activity may be one mechanism whereby some liver tumor promoters stimulate hepatocytes DNA synthesis. This study has implications for the mechanisms of tumor promotion in liver carcinogenesis.  相似文献   

10.
Regulation of intracellular pH (pHi) in single cultured rat hippocampal neurons was investigated using the fluorescent pHi indicator dye bis-carboxyethylcarboxyfluorescein. Resting pHi was dependent on the presence of bicarbonate and external Na+ but was not altered significantly by removal of Cl- or treatment with the anion exchange inhibitor diisothiocyanatostilbene-2,2'-disulfonate. Recovery of pHi from acute acid loading was due, in large part, to a pharmacologically distinct variant of the Na+/H+ antiporter. In nominally HCO3(-)-free solutions, this recovery exhibited a saturable dose dependence on extracellular Na+ (Km = 23-26 mM) or Li+. The antiporter was activated by decreasing pHi and was unaffected by collapse of the membrane potential with valinomycin. Like the Na+/H+ antiporter described in other cell systems, the hippocampal activity was inhibited by harmaline, but in sharp contrast, neither amiloride nor its more potent 5-amino-substituted analogues were able to prevent the recovery from an acid load. These data indicate that Na(+)-dependent mechanisms dominate pHi regulation in hippocampal neurons and suggest a role for a novel variant of the Na+/H+ antiporter.  相似文献   

11.
The Na(+)/H(+) exchanger 1 (NHE1) exists as a homo-dimer in the plasma membranes. In the present study, we have investigated the functional significance of the dimerization, using two nonfunctional NHE1 mutants, surface-expression-deficient G309V and transport-deficient E262I. Biochemical and immunocytochemical experiments revealed that these NHE1 mutants are capable of interacting with the wild-type NHE1 and, thus, forming a heterodimer. Expression of G309V retained the wild-type NHE1 to the ER membranes, suggesting that NHE1 would first form a dimer in the ER. On the other hand, expression of E262I markedly reduced the exchange activity of the wild-type NHE1 through an acidic shift in the intracellular pH (pH(i)) dependence, suggesting that dimerization is required for exchange activity in the physiological pH(i) range. However, a dominant-negative effect of E262I was not detected when exchange activity was measured at acidic pH(i), implying that one active subunit is sufficient to catalyze ion transport when the intracellular H(+) concentration is sufficiently high. Furthermore, intermolecular cysteine cross-linking at extracellular position Ser(375) with a bifunctional sulfhydryl reagent dramatically inhibited exchange activity mainly by inducing the acidic shift of pH(i) dependence and abolished extracellular stimuli-induced activation of NHE1 without causing a large change in the affinities for extracellular Na(+) or an inhibitor EIPA. Because monofunctional sulfhydryl regents had no effect, it is likely that cross-linking inhibited the activity of NHE1 by restricting a coupled motion between the two subunits during transport. Taken together, these data support the view that dimerization of two active subunits are required for NHE1 to possess the exchange activity in the neutral pH(i) range, although each subunit is capable of catalyzing transport in the acidic pH(i) range.  相似文献   

12.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   

13.
Isolated mitochondria-rich (MR) cells from the rainbow trout gill epithelium were subjected to intracellular pH (pH(i)) imaging with the pH-sensitive dye BCECF-AM. MR cells were categorized into two distinct functional subtypes based on their ability to recover pH(i) from an NH(4)Cl-induced acidification in the absence of Na(+). An apparent link between resting pH(i) and Na(+)-independent pH(i) recovery was made. We observed a unique pH(i) acidification event that was induced by extracellular Na(+) addition. This further classified the mixed MR cell population into two functional subtypes: the majority of cells (77%) demonstrated the Na(+)-induced pH(i) acidification, whereas the minority (23%) demonstrated an alkalinization of pH(i) under the same circumstances. The focus of this study was placed on the Na(+)-induced acidification and pharmacological analysis via the use of amiloride and phenamil, which revealed that Na(+) uptake was responsible for the intracellular acidification. Further experiments revealed that pH(i) acidification could be abolished when Na(+) was allowed entry into the cell, but the activity of an electrogenic Na(+)-HCO(3)(-) cotransporter (NBC) was inhibited by DIDS. The electrogenic NBC activity was supported by a DIDS-sensitive, Na(+)-induced membrane potential depolarization as observed via imaging of the voltage-sensitive dye bis-oxonol. We also demonstrated NBC immunoreactivity via Western blotting and immunohistochemistry in gill tissue. We propose a model for transepithelial Na(+) uptake occurring via an apical Na(+) channel linked to a basolateral, electrogenic NBC in one subpopulation of MR cells.  相似文献   

14.
Electrophysiological studies of H441 human distal airway epithelial cells showed that thapsigargin caused a Ca(2+)-dependent increase in membrane conductance (G(Tot)) and hyperpolarization of membrane potential (V(m)). These effects reflected a rapid rise in cellular K(+) conductance (G(K)) and a slow fall in amiloride-sensitive Na(+) conductance (G(Na)). The increase in G(Tot) was antagonized by Ba(2+), a nonselective K(+) channel blocker, and abolished by clotrimazole, a KCNN4 inhibitor, but unaffected by other selective K(+) channel blockers. Moreover, 1-ethyl-2-benzimidazolinone (1-EBIO), which is known to activate KCNN4, increased G(K) with no effect on G(Na). RT-PCR-based analyses confirmed expression of mRNA encoding KCNN4 and suggested that two related K(+) channels (KCNN1 and KCNMA1) were absent. Subsequent studies showed that 1-EBIO stimulates Na(+) transport in polarized monolayers without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)), suggesting that the activity of KCNN4 might influence the rate of Na(+) absorption by contributing to G(K). Transient expression of KCNN4 cloned from H441 cells conferred a Ca(2+)- and 1-EBIO-sensitive K(+) conductance on Chinese hamster ovary cells, but this channel was inactive when [Ca(2+)](i) was <0.2 microM. Subsequent studies of amiloride-treated H441 cells showed that clotrimazole had no effect on V(m) despite clear depolarizations in response to increased extracellular K(+) concentration ([K(+)](o)). These findings thus indicate that KCNN4 does not contribute to V(m) in unstimulated cells. The present data thus establish that H441 cells express KCNN4 and highlight the importance of G(K) to the control of Na(+) absorption, but, because KCNN4 is quiescent in resting cells, this channel cannot contribute to resting G(K) or influence basal Na(+) absorption.  相似文献   

15.
The mechanisms of intracellular pH (pHi) regulation were studied in isolated hepatopancreas cells from the Roman snail, Helix pomatia. The relationship between intracellular and extracellular pH indicated that pHi is actively regulated in these cells. At least three pHi-regulatory ion transporters were found to be present in these cells and to be responsible for the maintenance of pHi: an amiloride-sensitive Na+/H+ exchanger, a 4-acetamido-4'-isothiocyanostilbene-2,2'disulfonic acid (SITS)-sensitive, presumably Na(+)-dependent, Cl-/HCO3-exchanger, and a bafilomycin-sensitive H(+)-pump. Inhibition of one of these transporters alone did not affect steady state pHi, whereas incubation with amiloride and SITS in combination resulted in a significant intracellular acidification. Following the induction of intracellular acidosis by addition of the weak acid Na+propionate, the Na+/H+ exchanger was immediately activated leading to a rapid recovery of pHi towards the baseline level. Both the SITS-sensitive mechanism and the H(+)-pump responded more slowly, but were of similar importance for pHi recovery. Measurement of pHi recovery from acidification in the three discernible types of hepatopancreas cells with a video fluorescence image system revealed slightly differing response patterns, the physiological significance of which remains to be determined.  相似文献   

16.
Rat pancreatic acini loaded with the pH sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to characterize intracellular pH (pHi) regulatory mechanisms in these cells. The acini were attached to cover slips and continuously perfused. In 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered solutions recovery from acid load (H+ efflux) required extracellular Na+ (Na+out) and was blocked by amiloride. Likewise, H+ influx initiated by removal of Na+out was blocked by amiloride. Hence, in HEPES-buffered medium the major operative pHi regulatory mechanism is a Na+/H+ exchange. In HCO3(-)-buffered medium, amiloride only partially blocked recovery from acid load and acidification due to Na+out removal. The remaining fraction required Na+out, was inhibited by H2-4,4'-diisothiocyanostilbene-2,2'-disulfunic acid (H2DIDS) and was independent of C1-. Hence, a transporter with characteristics of a Na(+)-HCO3- cotransport exists in pancreatic acini. Measurement of pHi changes due to Na(+)-HCO3- cotransport, suggests that the transporter contributes to HCO3- efflux under physiological conditions. Changing the Cl- gradient across the plasma membrane of acini maintained in HCO3(-)-buffered solutions reveals the presence of an H2DIDS-sensitive, Na(+)-independent, Cl(-)-dependent, HCO3- transporter with characteristics of a Cl-/HCO3- exchanger. In pancreatic acini the exchanger transports HCO3- but not OH- and under physiological conditions functions to remove HCO3- from the cytosol. In summary, only the Na+/H+ exchanger is functional in HEPES-buffered medium to maintain pHi at 7.28 +/- 0.03. In the presence of 25 mM HCO3- at pHo of 7.4, all the transporters operate simultaneously to maintain a steady-state pHi of 7.13 +/- 0.04.  相似文献   

17.
Regulation of intracellular pH (pH(i)) by two-cell-stage embryos derived from female mice of three different strains (CF-1, Balb/c, and BDF) was investigated. Embryos recovered at a slow rate from intracellular acidosis produced by a pulse of NH(4)Cl; the rate did not differ significantly among strains. Recovery was reversibly inhibited by amiloride or the absence of Na(+), implicating Na(+)/H(+) antiporter activity. The threshold pH(i) (setpoint) below which Na(+)/H(+) antiporter activity was elicited was approximately 7.15 for each strain. No recovery from induced acidosis occurred in the absence of external Na(+) in any strain, and thus embryos could be maintained in acidosis for an extended period. Upon reintroduction of Na(+), embryos derived from either CF-1 or BDF females recovered at a slow rate comparable to that measured in embryos not maintained for a period in Na(+)-free medium, but embryos derived from Balb/c females consistently recovered at a highly accelerated rate. This accelerated recovery appeared to be due, in part, to an activation of the Na(+)/H(+) antiporter in Balb/c-derived embryos, which did not occur in CF-1- or BDF-derived embryos. Thus, embryos derived from different strains of female mice differ in their control of mechanisms for pH(i) regulation.  相似文献   

18.
The effect of intracellular acidification and subsequent pH recovery in sensory neurons has not been well characterized. We have studied the mechanisms underlying Ca(2+)-induced acidification and subsequent recovery of intracellular pH (pH(i)) in rat trigeminal ganglion neurons and report their effects on neuronal excitability. Glutamate (500 μM) and capsaicin (1 μM) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) with a following decrease in pH(i). The recovery of [Ca(2+)](i) to the prestimulus level was inhibited by LaCl(3) (1 mM) and o-vanadate (10 mM), a plasma membrane Ca(2+)/ATPase (PMCA) inhibitor. Removal of extracellular Ca(2+) also completely inhibited the acidification induced by capsaicin. TRPV1 was expressed only in small and medium sized trigeminal ganglion neurons. mRNAs for Na(+)/H(+) exchanger type 1 (NHE1), pancreatic Na(+)-HCO(3)(-) cotransporter type 1 (pNBC1), NBC3, NBC4, and PMCA types 1-3 were detected by RT-PCR. pH(i) recovery was significantly inhibited by pretreatment with NHE1 or pNBC1 siRNA. We found that the frequency of action potentials (APs) was dependent on pH(i). Application of the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (5 μM) or the pNBC1 inhibitor 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid (500 μM) delayed pH(i) recovery and decreased AP frequency. Simultaneous application of 5'-(N-ethyl-N-isopropyl) amiloride and 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid almost completely inhibited APs. In summary, our results demonstrate that the rise in [Ca(2+)](i) in sensory neurons by glutamate and capsaicin causes intracellular acidification by activation of PMCA type 3, that the pH(i) recovery from acidification is mediated by membrane transporters NHE1 and pNBC1 specifically, and that the activity of these transporters has direct consequences for neuronal excitability.  相似文献   

19.
Treating H441 cells with dexamethasone raised the abundance of mRNA encoding the epithelial Na(+) channel alpha- and beta-subunits and increased transepithelial ion transport (measured as short-circuit current, I(sc)) from <4 microA.cm(-2) to 10-20 microA.cm(-2). This dexamethasone-stimulated ion transport was blocked by amiloride analogs with a rank order of potency of benzamil >or= amiloride > EIPA and can thus be attributed to active Na(+) absorption. Studies of apically permeabilized cells showed that this increased transport activity did not reflect a rise in Na(+) pump capacity, whereas studies of basolateral permeabilized cells demonstrated that dexamethasone increased apical Na(+) conductance (G(Na)) from a negligible value to 100-200 microS.cm(-2). Experiments that explored the ionic selectivity of this dexamethasone-induced conductance showed that it was equally permeable to Na(+) and Li(+) and that the permeability to these cations was approximately fourfold greater than to K(+). There was also a small permeability to N-methyl-d-glucammonium, a nominally impermeant cation. Forskolin, an agent that increases cellular cAMP content, caused an approximately 60% increase in I(sc), and measurements made after these cells had been basolaterally permeabilized demonstrated that this response was associated with a rise in G(Na). This cAMP-dependent control over G(Na) was disrupted by brefeldin A, an inhibitor of vesicular trafficking. Dexamethasone thus stimulates Na(+) transport in H441 cells by evoking expression of an amiloride-sensitive apical conductance that displays moderate ionic selectivity and is subject to acute control via a cAMP-dependent pathway.  相似文献   

20.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号