首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RNA degradosome is a bacterial protein machine devoted to RNA degradation and processing. In Escherichia coli it is typically composed of the endoribonuclease RNase E, which also serves as a scaffold for the other components, the exoribonuclease PNPase, the RNA helicase RhlB, and enolase. Several other proteins have been found associated to the core complex. However, it remains unclear in most cases whether such proteins are occasional contaminants or specific components, and which is their function. To facilitate the analysis of the RNA degradosome composition under different physiological and genetic conditions we set up a simplified preparation procedure based on the affinity purification of FLAG epitope-tagged RNase E coupled to Multidimensional Protein Identification Technology (MudPIT) for the rapid and quantitative identification of the different components. By this proteomic approach, we show that the chaperone protein DnaK, previously identified as a "minor component" of the degradosome, associates with abnormal complexes under stressful conditions such as overexpression of RNase E, low temperature, and in the absence of PNPase; however, DnaK does not seem to be essential for RNA degradosome structure nor for its assembly. In addition, we show that normalized score values obtain by MudPIT analysis may be taken as quantitative estimates of the relative protein abundance in different degradosome preparations.  相似文献   

2.
Active cell death ('apoptosis' or 'programmed cell death') is essential in the development and homeostasis of multicellular organisms and abnormal inhibition of apoptosis is an indicator of cancer and autoimmune diseases, whereas excessive cell death is implicated in neurodegenerative disorders such as Alzheimer's disease (AD). Here we demonstrate new isoforms of the rat homologue of the drosophila tumor suppressor l(2)tid gene (rTid-1). Moreover, we show that rTid-1 interacts isoform-specifically with the heat-shock-cognate-glucose-regulated protein hscGRP75 and neither induces nor inhibits directly neuronal apoptosis. This finding points to a pivotal role of Tid-1 in the control of cellular survival.  相似文献   

3.
RNase E, the principal RNase capable of initiating mRNA decay, preferentially attacks 5'-monophosphorylated over 5'-triphosphorylated substrates. Site-specific cleavage in vitro of the rpsT mRNA by RNase H directed by chimeric 2'-O-methyl oligonucleotides was employed to create truncated RNAs which are identical to authentic degradative intermediates. The rates of cleavage of two such intermediates by RNase E in the RNA degradosome are significantly faster (2.5- to 8-fold) than that of intact RNA. This verifies the preference of RNase E for degradative intermediates and can explain the frequent "all-or-none" behavior of mRNAs during the decay process.  相似文献   

4.
5.
N Goshima  Y Inagaki  H Otaki  H Tanaka  N Hayashi  F Imamoto  Y Kano 《Gene》1992,118(1):97-102
Chimeric proteins between Escherichia coli histone-like HU and IHF were constructed by genetic engineering, in which part of the arm region was replaced by the corresponding region of IHF alpha (designated as HupANhimA) or IHF beta (HupANhimD); alternatively, an alpha-helix 2-beta 1 region was replaced by the corresponding region of IHF alpha (HupAXhimA) or IHF beta (HupAXhimD) (symbols N and X indicate NotI and XhoI junctions). These proteins were synthesized in a hupA-hupB double-deletion mutant. HupANhimA exhibited marked reduction in nonspecific DNA binding in vitro, and a drastic loss of HU activity in replicative transposition of Mu phage in vivo. HupANhimD also showed a significant reduction in the ability for DNA binding, though this protein supported Mu phage development. In contrast, the other two chimeric HU proteins showed only slight changes in nonspecific DNA-binding ability: they retained activities for transposition of Mu phage in vivo. These observations confirm that the flexible arm of HU-2, a domain proposed for DNA binding [Tanaka et al., Nature 310 (1984) 376-381; Goshima et al., Gene 96 (1990) 141-145], plays an important role in the physiological function of this protein. The results indicate that a unique conformation of the arm structure of HU protein, particularly the N-terminal half of a two-strand antiparallel beta-ribbon of the structure, is important for the DNA-binding ability of this protein.  相似文献   

6.
The Escherichia coli endoribonuclease RNase E is an essential enzyme having key roles in mRNA turnover and the processing of several structured RNA precursors, and it provides the scaffold to assemble the multienzyme RNA degradosome. The activity of RNase E is inhibited by the protein RraA, which can interact with the ribonuclease''s degradosome-scaffolding domain. Here, we report that RraA can bind to the RNA helicase component of the degradosome (RhlB) and the two RNA-binding sites in the degradosome-scaffolding domain of RNase E. In the presence of ATP, the helicase can facilitate the exchange of RraA for RNA stably bound to the degradosome. Our data suggest that RraA can affect multiple components of the RNA degradosome in a dynamic, energy-dependent equilibrium. The multidentate interactions of RraA impede the RNA-binding and ribonuclease activities of the degradosome and may result in complex modulation and rerouting of degradosome activity.  相似文献   

7.
Inhibitory effects of six antibiotics (kasugamycin, tetracycline, chloramphenicol, sparsomycin, puromycin and rifampicin) on the biosynthesis of envelope proteins of Escherichia coli were examined and compared with those on the biosynthesis of cytoplasmic proteins. Kasugamycin, puromycin and rifampicin were much more inhibitory to the over-all biosynthesis of cytoplasmic proteins than to that of envelope proteins. On the contrary, tetracycline and sparsomycin showed much stronger inhibitory effects on the biosynthesis of envelope proteins than on that of cytoplasmic proteins. Chloramphenicol showed little difference in its inhibitory effect on the biosynthesis of envelope proteins and cytoplasmic proteins.The envelope proteins were labeled with [3H]arginine in the presence of the antibiotics and separated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The inhibitory effects of the antibiotics on the biosynthesis of individual envelope proteins were then examined. Inhibition patterns were found to be widely different from one envelope protein to the other. For example, the biosynthesis of one major envelope protein of molecular weight 38,000 was more resistant to kasugamycin, chloramphenicol and sparsomycin than that of the other envelope proteins. On the other hand, the biosynthesis of another major envelope protein (lipoprotein) of about 7500 molecular weight was much more resistant to puromycin and rifampicin than that of the other envelope proteins. In the case of tetracycline, little differential inhibitory effect on the biosynthesis of individual envelope proteins was observed.Stability of messenger RNAs for individual envelope proteins was also determined from the inhibitory effect of rifampicin on their biosynthesis. It was found that the average of half lives of mRNAs for major envelope proteins examined (5.5 minutes) is twice as long as the average of those of mRNAs for cytoplasmic proteins (2 minutes), except for the lipoprotein of about 7500 molecular weight which has extremely stable mRNA with a half life of 11.5 minutes. From these results the envelope proteins of E. coli appear to be biosynthesized in a somewhat different manner from that of the cytoplasmic proteins. Furthermore, at least some envelope proteins may have their own specific biosynthetic systems.  相似文献   

8.
9.
In Escherichia coli, the exoribonuclease polynucleotide phosphorylase (PNPase), the endoribonuclease RNase E, a DEAD-RNA helicase and the glycolytic enzyme enolase are associated with a high molecular weight complex, the degradosome. This complex has an important role in processing and degradation of RNA. Chloroplasts contain an exoribonuclease homologous to E. coli PNPase. Size exclusion chromatography revealed that chloroplast PNPase elutes as a 580-600 kDa complex, suggesting that it can form an enzyme complex similar to the E. coli degradosome. Biochemical and mass-spectrometric analysis showed, however, that PNPase is the only protein associated with the 580-600 kDa complex. Similarly, a purified recombinant chloroplast PNPase also eluted as a 580-600 kDa complex after gel filtration chromatography. These results suggest that chloroplast PNPase exists as a homo-multimer complex. No other chloroplast proteins were found to associate with chloroplast PNPase during affinity chromatography. Database analysis of proteins homologous to E. coli RNase E revealed that chloroplast and cyanobacterial proteins lack the C-terminal domain of the E. coli protein that is involved in assembly of the degradosome. Together, our results suggest that PNPase does not form a degradosome-like complex in the chloroplast. Thus, RNA processing and degradation in this organelle differ in several respects from those in E. coli.  相似文献   

10.
11.
Compilation of E. coli mRNA promoter sequences.   总被引:32,自引:4,他引:28       下载免费PDF全文
  相似文献   

12.
Cell surface proteins of E. coli K12 have been labelled with 125I using a lactoperoxidase method. Results suggest that most outer membrane proteins so far characterised appear to have at least part of their polypeptide chain on the cell surface. These include major outer membrane protains I and II1, the maltose and vitamin B12 binding proteins and proteins involved in iron transport. The labelling of an antibiotic sensitive mutant and its parent were compared but their labelling patterns did not appear to differ in any way which would suggest the cause of the permeability difference between these two strains.  相似文献   

13.
The crystal structure of Escherichia coli enolase (EC 4.2.1.11, phosphopyruvate hydratase), which is a component of the RNA degradosome, has been determined at 2.5 A. There are four molecules in the asymmetric unit of the C2 cell, and in one of the molecules, flexible loops close onto the active site. This closure mimics the conformation of the substrate-bound intermediate. A comparison of the structure of the E. coli enolase with the eukaryotic enolase structures available (lobster and yeast) indicates a high degree of conservation of the hydrophobic core and the subunit interface of this homodimeric enzyme. The dimer interface is enriched in charged residues compared with other protein homodimers, which may explain our observations from analytical ultracentrifugation that dimerisation is affected by ionic strength. The putative role of enolase in the RNA degradosome is discussed; although it was not possible to ascribe a specific role to it, a structural role is possible.  相似文献   

14.
Functional mRNA half lives in E. coli.   总被引:18,自引:0,他引:18  
  相似文献   

15.
This work describes the isolation of mutations in infC, the structural gene for IF3, using different genetic screens. Among 21 mutants characterised, seven were shown to produce stable variant IF3 proteins unable to fully complement a strain carrying a chromosomal deletion of the infC gene. The mutants were also shown to be unable to normally discriminate against several non-canonical initiation codons such as AUU and ACG. The two mutants with the strongest complementation or discrimination defects carry changes in the C-terminal domain of IF3, which is responsible for the binding of the factor to the 30 S ribosomal subunit. We show that the first mutant has an expected decreased but the second an unexpected increased capacity to bind the 30 S subunit. The in vivo defects of the second mutant are explained by its capacity to bind unspecifically to other targets, as shown by its increased affinity for the 50 S subunit, which is normally not recognised by the factor. Interestingly, this mutant corresponds to a change of an acidic residue that might play a negative discriminatory role in preventing interactions with non-cognate RNAs, as has been reported for acidic residues of aminoacyl-tRNA synthetases shown to be involved in tRNA recognition.  相似文献   

16.
17.
A phoA-lacZ gene fusion was used to isolate mutants altered in the alkaline phosphatase signal sequence. This was done by selecting Lac+ mutants from a phoA-lacZ fusion strain that produces a membrane-bound hybrid protein and is unable to grow on lactose. Two such mutant derivatives were characterized. The mutations lie within the phoA portion of the fused gene and cause internalization of the hybrid protein. When the mutations were genetically recombined into an otherwise wild-type phoA gene, they interfered with export of alkaline phosphatase to the periplasm. The mutant alkaline phosphatase protein was found instead in the cytoplasm in precursor form. DNA sequence analysis demonstrated that both mutations lead to amino acid alterations in the signal sequence of alkaline phosphatase.  相似文献   

18.
RNase E is an essential Escherichia coli endonuclease, which controls both 5S rRNA maturation and bulk mRNA decay. While the C-terminal half of this 1061-residue protein associates with polynucleotide phosphorylase (PNPase) and several other enzymes into a 'degradosome', only the N-terminal half, which carries the catalytic activity, is required for growth. We characterize here a mutation (rne131 ) that yields a metabolically stable polypeptide lacking the last 477 residues of RNAse E. This mutation resembles the N-terminal conditional mutation rne1 in stabilizing mRNAs, both in bulk and individually, but differs from it in leaving rRNA processing and cell growth unaffected. Another mutation (rne105 ) removing the last 469 residues behaves similarly. Thus, the C-terminal half of RNase E is instrumental in degrading mRNAs, but dispensable for processing rRNA. A plausible interpretation is that the former activity requires that RNase E associates with other degradosome proteins; however, PNPase is not essential, as RNase E remains fully active towards mRNAs in rne+pnp mutants. All mRNAs are not stabilized equally by the rne131 mutation: the greater their susceptibility to RNase E, the larger the stabilization. Artificial mRNAs generated by E. coli expression systems based on T7 RNA polymerase can be genuinely unstable, and we show that the mutation can improve the yield of such systems without compromising cell growth.  相似文献   

19.
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one‐ or two‐step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often‐overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.  相似文献   

20.
Scaffolding growth factor receptor-bound (Grb) adaptor proteins are components of macromolecular signaling complexes at the plasma membrane and thus are putative regulators of ion channel activity. The present study aimed to define the impact of Grb adaptor proteins on the function of cardiac K+ channels. To this end channel proteins were coinjected with the adaptor proteins in Xenopus oocytes and channel activity analyzed with two-electrode voltage-clamp. It is shown that coexpression of Grb adaptor proteins can reduce current amplitudes of coexpressed channels. Grb7 and 10 significantly inhibited functional currents generated by hERG, Kv1.5 and Kv4.3 channels. Only Grb10 significantly inhibited KCNQ1/KCNE1 K+ channels, and only Grb7 reduced Kir2.3 activity, whereas neither Grb protein significantly affected the closely related Kir2.1 and Kir2.2 channels. The present observations for the first time provide evidence for a selective and modulatory role of Grb adaptor proteins in the functional expression of cardiac K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号