首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate here that the assembly of the RNase E-based degradosome of Escherichia coli is not required for normal mRNA decay in vivo. In contrast, deletion of the arginine-rich RNA binding site (ARRBS) from the RNase E protein slightly impairs mRNA decay. When both the degradosome scaffold region and the ARRBS are missing, mRNA decay is dramatically slowed, but 9S rRNA processing is almost normal. An extensive RNase E truncation mutation (rnedelta610) had a more pronounced mRNA decay defect at 37 degrees C than the temperature-sensitive rne-1 allele at 44 degrees C. Taken together, these data suggest that the inviability associated with inactivation of RNase E is not related to defects in either mRNA decay or rRNA processing.  相似文献   

2.
The ptsG mRNA encoding the major glucose transporter is rapidly degraded in an RNase E-dependent manner in response to the accumulation of glucose 6-P or fructose 6-P when the glycolytic pathway is blocked at its early steps in Escherichia coli. RNase E, a major endonuclease, is associated with polynucleotide phosphorylase (PNPase), RhlB helicase and a glycolytic enzyme, enolase, which bind to its C-terminal scaffold region to form a multienzyme complex called the RNA degradosome. The role of enolase within the RNase E-based degradosome in RNA decay has been totally mysterious. In this article, we demonstrate that the removal of the scaffold region of RNase E suppresses the rapid degradation of ptsG mRNA in response to the metabolic stress without affecting the expression of ptsG mRNA under normal conditions. We also demonstrate that the depletion of enolase but not the disruption of pnp or rhlB eliminates the rapid degradation of ptsG mRNA. Taken together, we conclude that enolase within the degradosome plays a crucial role in the regulation of ptsG mRNA stability in response to a metabolic stress. This is the first instance in which a physiological role for enolase in the RNA degradosome has been demonstrated. In addition, we show that PNPase and RhlB within the degradosome cooperate to eliminate short degradation intermediates of ptsG mRNA.  相似文献   

3.
The RNA degradosome is a bacterial protein machine devoted to RNA degradation and processing. In Escherichia coli it is typically composed of the endoribonuclease RNase E, which also serves as a scaffold for the other components, the exoribonuclease PNPase, the RNA helicase RhlB, and enolase. Several other proteins have been found associated to the core complex. However, it remains unclear in most cases whether such proteins are occasional contaminants or specific components, and which is their function. To facilitate the analysis of the RNA degradosome composition under different physiological and genetic conditions we set up a simplified preparation procedure based on the affinity purification of FLAG epitope-tagged RNase E coupled to Multidimensional Protein Identification Technology (MudPIT) for the rapid and quantitative identification of the different components. By this proteomic approach, we show that the chaperone protein DnaK, previously identified as a "minor component" of the degradosome, associates with abnormal complexes under stressful conditions such as overexpression of RNase E, low temperature, and in the absence of PNPase; however, DnaK does not seem to be essential for RNA degradosome structure nor for its assembly. In addition, we show that normalized score values obtain by MudPIT analysis may be taken as quantitative estimates of the relative protein abundance in different degradosome preparations.  相似文献   

4.
The Escherichia coli RNA degradosome is a multicomponent ribonucleolytic complex consisting of three major proteins that assemble on a scaffold provided by the C-terminal region of the endonuclease, RNase E. Using an E. coli two-hybrid system, together with BIAcore apparatus, we investigated the ability of three proteins, polynucleotide phosphorylase (PNPase), RhlB RNA helicase, and enolase, a glycolytic protein, to interact physically and functionally independently of RNase E. Here we report that Rh1B can physically bind to PNPase, both in vitro and in vivo, and can also form homodimers with itself. However, binding of RhlB or PNPase to enolase was not detected under the same conditions. BIAcore analysis revealed real-time, direct binding for bimolecular interactions between Rh1B units and for the RhlB interaction with PNPase. Furthermore, in the absence of RNase E, purified RhlB can carry out ATP-dependent unwinding of double-stranded RNA and consequently modulate degradation of double-stranded RNA together with the exonuclease activity of PNPase. These results provide evidence for the first time that both functional and physical interactions of individual degradosome protein components can occur in the absence of RNase E and raise the prospect that the RNase E-independent complexes of RhlB RNA helicase and PNPase, detected in vivo, may constitute mini-machines that assist in the degradation of duplex RNA in structures physically distinct from multicomponent RNA degradosomes.  相似文献   

5.
6.
Escherichia coli contains at least five ATP-dependent DEAD-box RNA helicases which may play important roles in macromolecular metabolism, especially in translation and mRNA decay. Here we demonstrate that one member of this family, CsdA, whose expression is induced by cold shock, interacts physically and functionally with RNase E. Three independent approaches show that after a shift of cultures to 15 degrees C, CsdA co-purifies with RNase E and other components of the RNA degradosome. Moreover, functional assays using reconstituted minimal degradosomes prepared from purified components in vitro show that CsdA can fully replace the resident RNA helicase of the RNA degradosome, RhlB. In addition, under these conditions, CsdA displays RNA-dependent ATPase activity. Taken together, our data are consistent with a model in which CsdA accumulates during the early stages of cold acclimatization and subsequently assembles into degradosomes with RNase E synthesized in cold-adapted cultures. These findings show that the RNA degradosome is a flexible macromolecular machine capable of adapting to altered environmental conditions.  相似文献   

7.
RNase E (Rne) plays a major role in the decay and processing of numerous RNAs in E. coli, and protein inhibitors of RNase E, RraA and RraB, have recently been discovered. Here, we report that coexpression of RraA or RraB reduces the ribonucleolytic activity in rne-deleted E. coli cells overproducing RNase ES, a Streptomyces coelicolor functional ortholog of RNase E, and consequently rescues these cells from growth arrest. These findings suggest that the regulators of ribonuclease activity have a conserved intrinsic property that effectively acts on an RNase E-like enzyme found in a distantly related bacterial species.  相似文献   

8.
RraA and RraB are recently discovered protein inhibitors of RNAse E, which forms a large protein complex termed the degradosome that catalyzes the initial step in the decay and processing of numerous RNAs in Escherichia coli . Here, we report that these E. coli protein inhibitors physically interact with RNAse ES, a Streptomyces coelicolor functional ortholog of RNAse E, and inhibit its action in vivo as well as in vitro ; however, unlike their ability to differentially modulate E. coli RNAse E action in a substrate-dependent manner by altering the composition of the degradosome, both proteins appear to have a general inhibitory effect on the ribonucleolytic activity of RNAse ES, which does not interact with E. coli polynucleotide phosphorylase, a major component of the degradosome. Our findings suggest that these regulators of RNAse activity have a conserved intrinsic property enabling them to directly act on RNAse E-related enzymes and inhibit their general ribonucleolytic activity.  相似文献   

9.
The Escherichia coli protein RhlB is an ATP-dependent motor that unfolds structured RNA for destruction by partner ribonucleases. In E. coli, and probably many other related gamma-proteobacteria, RhlB associates with the essential endoribonuclease RNase E as part of the multi-enzyme RNA degradosome assembly. The interaction with RNase E boosts RhlB's ATPase activity by an order of magnitude. Here, we examine the origins and implications of this effect. The location of the interaction sites on both RNase E and RhlB are refined and analysed using limited protease digestion, domain cross-linking and homology modelling. These data indicate that RhlB's carboxy-terminal RecA-like domain engages a segment of RNase E that is no greater than 64 residues. The interaction between RhlB and RNase E has two important consequences: first, the interaction itself stimulates the unwinding and ATPase activities of RhlB; second, RhlB gains proximity to two RNA-binding sites on RNase E, with which it cooperates to unwind RNA. Our homology model identifies a pattern of residues in RhlB that may be key for recognition of RNase E and which may communicate the activating effects. Our data also suggest that the association with RNase E may partially repress the RNA-binding activity of RhlB. This repression may in fact permit the interplay of the helicase and adjacent RNA binding segments as part of a process that steers substrates to either processing or destruction, depending on context, within the RNA degradosome assembly.  相似文献   

10.
Erce MA  Low JK  Wilkins MR 《The FEBS journal》2010,277(24):5161-5173
The RNA degradosome is built on the C-terminal half of ribonuclease E (RNase E) which shows high sequence variation, even amongst closely related species. This is intriguing given its central role in RNA processing and mRNA decay. Previously, we have identified RhlB (ATP-dependent DEAD-box RNA helicase)-binding, PNPase (polynucleotide phosphorylase)-binding and enolase-binding microdomains in the C-terminal half of Vibrio angustum S14 RNase E, and have shown through two-hybrid analysis that the PNPase and enolase-binding microdomains have protein-binding function. We suggest that the RhlB-binding, enolase-binding and PNPase-binding microdomains may be interchangeable between Escherichia coli and V. angustum S14 RNase E. In this study, we used two-hybrid techniques to show that the putative RhlB-binding microdomain can bind RhlB. We then used Blue Native-PAGE, a technique commonly employed in the separation of membrane protein complexes, in a study of the first of its kind to purify and analyse the RNA degradosome. We showed that the V. angustum S14 RNA degradosome comprises at least RNase E, RhlB, enolase and PNPase. Based on the results obtained from sequence analyses, two-hybrid assays, immunoprecipitation experiments and Blue Native-PAGE separation, we present a model for the V. angustum S14 RNA degradosome. We discuss the benefits of using Blue Native-PAGE as a tool to analyse the RNA degradosome, and the implications of microdomain-mediated RNase E interaction specificity.  相似文献   

11.
12.
13.
The hydrolytic endoribonuclease RNase E, which is widely distributed in bacteria and plants, plays key roles in mRNA degradation and RNA processing in Escherichia coli. The enzymatic activity of RNase E is contained within the conserved amino-terminal half of the 118 kDa protein, and the carboxy-terminal half organizes the RNA degradosome, a multi-enzyme complex that degrades mRNA co-operatively and processes ribosomal and other RNA. The study described herein demonstrates that the carboxy-terminal domain of RNase E has little structure under native conditions and is unlikely to be extensively folded within the degradosome. However, three isolated segments of 10-40 residues, and a larger fourth segment of 80 residues, are predicted to be regions of increased structural propensity. The larger of these segments appears to be a protein-RNA interaction site while the other segments possibly correspond to sites of self-recognition and interaction with the other degradosome proteins. The carboxy-terminal domain of RNase E may thus act as a flexible tether of the degradosome components. The implications of these and other observations for the organization of the RNA degradosome are discussed.  相似文献   

14.
Endoribonuclease E, a key enzyme involved in RNA decay and processing in bacteria, organizes a protein complex called degradosome. In Escherichia coli, Rhodobacter capsulatus, and Streptomyces coelicolor, RNase E interacts with the phosphate-dependent exoribonuclease polynucleotide phosphorylase, DEAD-box helicase(s), and additional factors in an RNA-degrading complex. To characterize the degradosome of the psychrotrophic bacterium Pseudomonas syringae Lz4W, RNase E was enriched by cation exchange chromatography and fractionation in a glycerol density gradient. Most surprisingly, the hydrolytic exoribonuclease RNase R was found to co-purify with RNase E. Co-immunoprecipitation and Ni(2+)-affinity pull-down experiments confirmed the specific interaction between RNase R and RNase E. Additionally, the DEAD-box helicase RhlE was identified as part of this protein complex. Fractions comprising the three proteins showed RNase E and RNase R activity and efficiently degraded a synthetic stem-loop containing RNA in the presence of ATP. The unexpected association of RNase R with RNase E and RhlE in an RNA-degrading complex indicates that the cold-adapted P. syringae has a degradosome of novel structure. The identification of RNase R instead of polynucleotide phosphorylase in this complex underlines the importance of the interaction between endo- and exoribonucleases for the bacterial RNA metabolism. The physical association of RNase E with an exoribonuclease and an RNA helicase apparently is a common theme in the composition of bacterial RNA-degrading complexes.  相似文献   

15.
The multifunctional ribonuclease RNase E and the 3'-exonuclease polynucleotide phosphorylase (PNPase) are major components of an Escherichia coli ribonucleolytic "machine" that has been termed the RNA degradosome. Previous work has shown that poly(A) additions to the 3' ends of RNA substrates affect RNA degradation by both of these enzymes. To better understand the mechanism(s) by which poly(A) tails can modulate ribonuclease action, we used selective binding in 1 m salt to identify E. coli proteins that interact at high affinity with poly(A) tracts. We report here that CspE, a member of a family of RNA-binding "cold shock" proteins, and S1, an essential component of the 30 S ribosomal subunit, are poly(A)-binding proteins that interact functionally and physically, respectively, with degradosome ribonucleases. We show that purified CspE impedes poly(A)-mediated 3' to 5' exonucleolytic decay by PNPase by interfering with its digestion through the poly(A) tail and also inhibits both internal cleavage and poly(A) tail removal by RNase E. The ribosomal protein S1, which is known to interact with sequences at the 5' ends of mRNA molecules during the initiation of translation, can bind to both RNase E and PNPase, but in contrast to CspE, did not affect the ribonucleolytic actions of these enzymes. Our findings raise the prospect that E. coli proteins that bind to poly(A) tails may link the functions of degradosomes and ribosomes.  相似文献   

16.
RNase E is an essential Escherichia coli endonuclease, which controls both 5S rRNA maturation and bulk mRNA decay. While the C-terminal half of this 1061-residue protein associates with polynucleotide phosphorylase (PNPase) and several other enzymes into a 'degradosome', only the N-terminal half, which carries the catalytic activity, is required for growth. We characterize here a mutation (rne131 ) that yields a metabolically stable polypeptide lacking the last 477 residues of RNAse E. This mutation resembles the N-terminal conditional mutation rne1 in stabilizing mRNAs, both in bulk and individually, but differs from it in leaving rRNA processing and cell growth unaffected. Another mutation (rne105 ) removing the last 469 residues behaves similarly. Thus, the C-terminal half of RNase E is instrumental in degrading mRNAs, but dispensable for processing rRNA. A plausible interpretation is that the former activity requires that RNase E associates with other degradosome proteins; however, PNPase is not essential, as RNase E remains fully active towards mRNAs in rne+pnp mutants. All mRNAs are not stabilized equally by the rne131 mutation: the greater their susceptibility to RNase E, the larger the stabilization. Artificial mRNAs generated by E. coli expression systems based on T7 RNA polymerase can be genuinely unstable, and we show that the mutation can improve the yield of such systems without compromising cell growth.  相似文献   

17.
18.
19.
RraA is an evolutionary conserved protein inhibitor of RNase E, which catalyzes the initial step in the decay and processing of numerous RNAs in Escherichia coli and forms the core component of the degradosome, a large protein complex involved in RNA metabolism. Here, we report that co-expression of RraA reduces the ribonucleolytic activity in cells over-producing RNase E and consequently rescues these cells from growth arrest. These findings suggest that inability of cells over-producing RNase E to normally grow results from increased cellular ribonucleolytic activity and RraA is able to effectively modulate the catalytic activity of RNase E in vivo.  相似文献   

20.
Multiprotein complexes that carry out RNA degradation and processing functions are found in cells from all domains of life. In Escherichia coli, the RNA degradosome, a four-protein complex, is required for normal RNA degradation and processing. In addition to the degradosome complex, the cell contains other ribonucleases that also play important roles in RNA processing and/or degradation. Whether the other ribonucleases are associated with the degradosome or function independently is not known. In the present work, IP (immunoprecipitation) studies from cell extracts showed that the major hydrolytic exoribonuclease RNase II is associated with the known degradosome components RNaseE (endoribonuclease E), RhlB (RNA helicase B), PNPase (polynucleotide phosphorylase) and Eno (enolase). Further evidence for the RNase II-degradosome association came from the binding of RNase II to purified RNaseE in far western affinity blot experiments. Formation of the RNase II–degradosome complex required the degradosomal proteins RhlB and PNPase as well as a C-terminal domain of RNaseE that contains binding sites for the other degradosomal proteins. This shows that the RNase II is a component of the RNA degradosome complex, a previously unrecognized association that is likely to play a role in coupling and coordinating the multiple elements of the RNA degradation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号