首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Neural connections of the corpus cardiacum (CC) in the African locust, Locusta migratoria, were labelled with the fluorescent tracer Lucifer yellow. (1) Unilateral anterograde labelling of the nervus corporis cardiaci I revealed fluorescent fibres in the storage lobe of the CC (CCS). Some fluorescent fibres in the CCS closely approached the ipsilateral border of the glandular lobes of the CC (CCG). Fluorescent fibres also projected into the neuropile of the hypocerebral ganglion via the ipsilateral nervi cardiostomatogastrici I and II, and from there into the oesophageal nerves. (2) Unilateral anterograde labelling of the nervus corporis cardiaci II revealed fluorescent fibres in the CCS and in the ipsilateral CCG. Fluorescent fibres also projected via the ipsilateral nervus corporis allati I into the corpus allatum. (3) Unilateral retrograde labelling of the nervus corporis allati I revealed a distinct fluorescent nerve tract that runs through the CCS and into the nervus corporis cardiaci II. The tract arises from about eight cell bodies in the brain at the rostroventral side of the ipsilateral calyx of the mushroom body. (4) Labelling of the recurrent nerve revealed fluorescent fibres and some fluorescent cell bodies in the hypocerebral ganglion and, via the nervi cardiostomatogastrici I and II, also in the CCS. Fluorescent fibres were also present in the oesophageal nerves.  相似文献   

2.
Summary The neuronal pathways connecting the stomatogastric nervous system with the retrocerebral complex of the cockroach, Periplaneta americana, were investigated by means of axonal cobalt chloride iontophoresis. Somata in the hypocerebral ganglion and in the nervus recurrens sending their axons to different parts of the stomatogastric nervous system were traced. Some axons in the oesophageal nerve arise from large perikarya in the anterior part of the pars intercerebralis and pass via the NCCI to the corpora cardiaca and the oesophageal nerve. They form a profuse dendritic tree in the protocerebrum. Fibers of the NCC I and NCC II as well as the NCA I and NCA II enter the stomatogastric nervous system via the hypocerebral ganglion.  相似文献   

3.
Summary The distribution of octopamine in the metathoracic ganglion, brain and corpus cardiacum of Locusta migratoria and Schistocerca gregaria was investigated by means of immunocytochemistry with an antiserum against octopamine. The dorsal unpaired median (DUM) cells of the metathoracic ganglion were found to be strongly octopamine-immunoreactive. In the rostroventral part of the protocerebrum a group of seven immunopositive cells was demonstrated. Stained nerve fibres of these cells run into three directions: circumoesophageal connectives, midbrain, and optic lobes. As far as the protocerebrum is concerned, immunoreactive fibres were found in the central body, the protocerebral bridge, and in other neuropile areas. In the optic lobe a dense plexus of immunopositive fibres was found in the lobula and in the medulla. In the brain one other immunopositive cell was demonstrated, situated at the lateral border of the tritocerebrum. Octopamine could not be shown to occur either in the globuli cells of the mushroom bodies or in the dorsolateral part of the protocerebrum, where the perikarya of the secretomotor neurones are located that innervate the glandular cells of the corpus cardiacum. In the nervi corporis cardiaci II, which contain the axons of the neurones that extend into the glandular part of the corpus cardiacum, and in the corpus cardiacum proper no specific octopamine immunoreactivity could be found.  相似文献   

4.
Summary Three antisera were used to study the distribution and anatomy of bovine pancreatic polypeptide (BPP)-like/FMRFamide-like immunoreactive neurones within the unfused abdominal ganglia of the migratory locust, Locusta migratoria. All the antisera used stained two or more clusters of perikarya, localized anteriorly and posteriorly near the midline within each unfused abdominal ganglion. Double labelling experiments with intracellular dye injection, or differential backfilling, combined with subsequent immunostaining were carried out to identify these neurones. Two of the antisera (antisera 1 and 2, both raised against FMRFamide) stained three groups of midline neurones, located anterior dorsal, anterior ventral and posterior dorsal within the ganglion. Neurones of the former of these two clusters projected via the anterior median nerve to a neurohaemal organ. The posterior cluster of midline cells comprised immunopositive perikarya all but one of which also projected via the anterior median nerve to innervate the neurohaemal organ. Double labelling with Lucifer yellow and antisera 1 and 2 showed that the remaining neurone was the previously identified doral unpaired median (DUM)heart1 neurone. The third antiserum (AK141), also raised against FMRFamide, stained neurones within an anterior dorsal cluster, and in a posterior cluster. Double labelling with differential Co2+/Ni2+-backfilling and the antiserum 3 (AK141) demonstrated that the large neurones of both clusters belonged to the population of bilaterally projecting neurones (BPNs), including the DUMheart1 neurone. Since the antisera cross-react with BPP and fail to label neurones when preadsorped with BPP or FMRFamide, we conclude that the labelled neurones contain polypeptides of the FMRFamide/BPP-family.  相似文献   

5.
Summary The distribution of gastrin/CCK-like immunoreactive material has been studied in the retrocerebral complex of Calliphora. The material reacts with antisera specific for the common COOH terminus of gastrin and CCK but not with N-terminal antisera. The three thoracic ganglia and the fused abdominal ganglia each contain a specific number of symmetrically arranged immunoreactive cells both dorsally and ventrally in pairs on either side of the midline in a sagittal plane. The neuropil of these ganglia also contains a considerable amount of immunoreactive fibres and droplets. Reconstructed axonal pathways suggest that some of the nerve fibres have their origins within the brain and/or the suboesophageal ganglion. Immunoreactive material may also be seen apparently leaving the thoracic ganglion posteriorly via the abdominal nerves, and there is strong evidence of a neurohaemal organ within the dorsal sheath in the region of the metathoracic and abdominal ganglia. There appears to be a direct correlation between the content of peptidergic material of cells and fibres and the age and diet of the flies. The corpus cardiacum contains COOH-terminal specific gastrin/CCK-like material within the intrinsic cells and in the neuropil. It is present also in the cardiac-recurrent nerve entering the corpus cardiacum anteriorly and in the nerves leaving the gland dorsoposteriorly, the aortic or cardiac nerves. It is not observed, however, in the nerves leaving the corpus cardiacum ventroposteriorly, the so-called oesophageal, gastric or crop-duct nerves. The corpus allatum and the hypocerebral ganglion do not contain immunoreactive material of this type. Gastrin/CCK-like and secretin-like immunoreactive materials appear to co-exist in the cells of the corpus cardiacum and co-existence of gastrin/CCK-like and pancreatic polypeptide like substances occurs within certain cells of the thoracic ganglion.  相似文献   

6.
Summary The distribution of a neuropeptide, previously shown to have the same or a very similar amino acid composition as vertebrate pancreatic polypeptide (PP), has been studied in the nervous system and gut of the blowfly, Calliphora vomitoria. Neurones immunoreactive to a bovine PP antiserum occur in the thoracic and abdominal ganglionic components of the central nervous system, in addition to the brain and suboesophageal ganglion. Pancreatic polypeptide appears to be relayed from its cells of origin to a neurohaemal organ in the dorsal sheath of the thoracic ganglion. PP immunoreactivity is also found in cells of the hypocerebral ganglion of the stomatogastric nervous system and in associated nerve fibres. The mid-gut contains PP-positive material in flask-shaped cells of its epithelial lining.  相似文献   

7.
Movements of the antennae induced by odour were investigated. Odour presented to the antenna of one side induced both antennae to move to that side. The EMGs recorded from the flexor muscles of both scapes showed that the latency of the movement of the ipsilateral flagellum when induced by odour was about 71 msec shorter than that of the contralateral flagellum. Recording electrical activities from the antennal nerve showed that there are more than 14 neurones in the antenno-motor externus.The distribution of the antennal nerve in the brain was investigated histologically by the injection of fluorescent dye. Antennal sensory neurones terminated at the glomeruli in the antennal lobe, in the dorsal lobe, in the protocerebrum, and in the commissural part of the suboesophageal ganglion. Injection of the fluorescent dye into the antennal nerve after degeneration of the antennal sensory neurones showed that the antennal motoneurones run in the ventral side of the antennal and dorsal lobes, and terminate in the marginal region of the ipsilateral oesophageal connective.The difference in latency of odour-induced flagellar movements is discussed in relation to the histological results and the unitary responses in the brain reported previously.  相似文献   

8.
Summary The stomatogastric nervous system of a mantis shrimp,Squilla oratoria, is described. The motor nerves of the stomatogastric ganglion (STG) and their innervation of muscles of the posterior cardiac plate (pcp) and pyloric systems are detailed.The STG contains more than 25 neurons. It sends out one pair of major output nerves. The pcp-pyloric cycle recorded from the motor axons in this nerve consists of rhythmic bursts of several units which fire with a characteristic phase relationship to each other. The rhythm is intrinsic to the STG itself, but it is modifiable.Recordings from the peripheral nerves reveal that identifiable cardiac plate, pyloric dilator and pyloric neurons control sequential contractions of the pcp and pyloric muscles to constrict or dilate a number of their attached ossicles.Several modulatory input fibres in the stomatogastric nerve, activated via stimulation of the superior or inferior oesophageal nerve (son, ion), prime or trigger the cyclic motor outputs. The son inputs induce distinct effects on the cardiac and pcp-pyloric pattern generators, while the ion inputs, via the oesophageal ganglion, excite only the pcp-pyloric generator.On the basis of anatomical and physiological observations, the possible functions of motor neurons involved in the pcp-pyloric cycle are described with reference to opening of the pcp and pyloric channels.This stomatogastric nervous system inSquilla is compared to that in decapods which has been well analyzed.Abbreviations CG commissural ganglion - ion inferior oesophageal nerve - lvn lateral ventricular nerve - OG oesophageal ganglion - pep posterior cardiac plate - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve - ivn inferior ventricular nerve  相似文献   

9.
Summary Nerve elements in the small intestine of the bullfrog. Rana catesbeiana, were studied by immunohistochemistry with anti-methionine enkephalin antisera and by nerve lesion experiments, using laser irradiation. Methionine-enkephalin immunopositive nerve fibers occur in the myenteric plexus, circular muscle layer, submucosa, and mucosa. Immunopositive nerve cell bodies in the myenteric plexus have dendrite-like and a long axon-like processes. In the froglet (3 months after metamorphosis), these axon-like processes lead posteriorly in the nerve strand of the myenteric plexus. Some bifurcate, one branch continuing posteriorly, the other doubling back to lead anteriorly; both form terminal varicose fibers in the circular muscle layer. Nerve lesion experiments, in the adult bullfrog, resulted in accumulations of methionine-enkephalin immunoreactivity at the oral and hinder edges of the laser-irradiated necrotic area; there were sprouting and nonsprouting immunopositive stumps. It is suggested that bidirectional flow of methionine-enkephalin in the myenteric plexus is mediated via the anterior and posterior branches of the axon-like process. The difference in sprouting behavior of immunopositive nerve fiber stumps, after nerve lesion, is discussed with reference to regional differences of the axon-like process.  相似文献   

10.
Summary The stomach, small intestine and large intestine of the toad, Bufo marinus, were processed for formaldehyde-induced fluorescence histochemistry. After extrinsic denervation or pretreatment with 6-hydroxydopamine to remove catecholamine fluorescence, yellow fluorescence typical of 5-hydroxytryptamine was observed in neurones in the small intestine only. The cell bodies and their processes were confined to the myenteric plexus. Additional pretreatment with 5-hydroxytryptamine enhanced the fluorescence of neurones in the small intestine and revealed yellowfluorescent nerve fibres, but not cell bodies, in the longitudinal and circular muscle layers and myenteric plexus of the large intestine. No fluorescent neurones were observed in the stomach. Following reserpine treatment, which removed native yellow fluorescence in the small intestine, exposure to 5-hydroxytryptophan produced yellow fluorescence in axons in both small and large intestine; exposure to tryptophan never restored fluorescence. The neurotoxin, 5,7-dihydroxytryptamine had no effect on the distribution of yellow-fluorescent neurones in the small and large intestine. No 5-HT-containing mast cells were present in either the small or large intestine. Thin layer chromatography with three different mobile phases showed a 5-hydroxytryptamine-like compound in extracts of mucosa-free small and large intestine but not of stomach.  相似文献   

11.
In situ hybridisation studies using a digoxigenin-labelled DNA probe encoding the Leu-callatostatin prohormone of the blowflies Calliphora vomitoria and Lucilia cuprina have revealed a variety of neurones in the brain and thoracico-abdominal ganglion, peripheral neurosecretory neurones, and endocrine cells of the midgut. With two exceptions, the hybridising cells are the same as those previously identified in immunocytochemical studies of sections and whole-mounts using Leu-callatostatin COOH-terminal-specific antisera. Within the brain and suboesophageal ganglion, there is a variety of neurones ranging from a single pair of large cells situated in the dorsal protocerebrum, to the several pairs of neurones in the tritocerebrum, some of which, in immunocytochemical preparations, can be seen to project via axons in the cervical connective to the thoracico-abdominal ganglion. In the medulla of the optic lobes, numerous small interneurones hybridise with the probe, as do clusters of similar-sized neurones close to the roots of the ocellar nerves. These results indicate that the Leu-callatostatin neuropeptides of the brain play a variety of roles in neurotransmission and neuromodulation. There are only three pairs of Leu-callatostatin-immunoreactive neurones in the thoracico-abdominal ganglion, at least two pairs of which project axons along the median abdominal nerve to provide extensive innervation of the hindgut. The Leu-callatostatin peripheral neurosecretory cells are located in close association with both nerve and muscle fibres in the thorax. In addition to neuronal Leu-callatostatin, the presence of the peptide and its mRNA has been demonstrated in endocrine cells in the posterior part of the midgut. These observations provide an example of a named brain/gut peptide in an insect.  相似文献   

12.
The storage part of the corpus cardiacum of Locusta migratoria consists of two compartments: a neural part on the haemocoelic side containing neuronal cell bodies that are protected by a blood-brain barrier, and a neurohaemal part adjacent to the aorta. Intracellular filling of the neurones in the neural part with Lucifer yellow followed by confocal laser scanning microscopy has revealed that these neurones can be divided into several classes. None of the neurones has processes extending into the glandular part of the corpus cardiacum. They are, therefore, not directly involved in the regulation of adipokinetic cell activity.  相似文献   

13.
The hypocerebral organs of Euperipatoides kanangrensis are a pair of spherical vesicles located ventral to the cerebral ganglia. They develop in the embryo from the most anterior pair of ventral organs, in the antennal segment. The wall of each hypocerebral organ is a dense epithelium of elongate cells with peripheral nuclei. The cytoplasm of the cells includes numerous mitochondria, Golgi bodies and microtubules. The small lumen, located eccentrically within the organ, contains concentrically layered electron-dense material resembling cuticle.Each hypocerebral organ is enclosed by a layer of extracellular matrix continuous with that surrounding the adjacent cerebral ganglion. There are no nerve connections between ganglion and organ, but cellular connections traverse the intervening matrix and could serve as a communication pathway. The ultrastructure of the hypocerebral organs indicates that they are glands.  相似文献   

14.
Summary Neuronal pathways in the retrocerebral complex and thoracico-abdominal ganglionic mass of the blowflyCalliphora vomitoria have been identified immunocytochemically with antisera against the extended-enkephalins, Met-enkephalin-Arg6-Phe7 (Met-7) and Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). Neurons of the hypocerebral ganglion, immunoreactive to Met-8, have axons in the crop duct nerve and terminals in muscles of the crop and its duct. Certain neurons of the hypocerebral ganglion are also immunoreactive to Met-7, and axons from these cells innervate the heart. Met-8 immunoreactive nerve terminals invest the cells of the corpus allatum. The source of this material is believed to ve a single pair of lateral neurosecretory cells in the brain. There is no Met-7 immunoreactive material in the corpus allatum. In the corpus cardiacum neither Met-7 nor Met-8 immunoreactivity is present in the cells. However, in the neuropil of the gland certain fibres, with their origins elsewhere, do contain Met-8 immunoreactivity. The most prominent neurons in the thoracic ganglion are the Met-7 immunoreactive ventral thoracic neurosecretory cells, axons from which project to neurohaemal areas in the dorsal neural sheath and also, via the ventral connective, to the brain. Co-localisation studies show that the perikarya of these cells are immunoreactive to antisera raised against several vertebrate-type peptides, such as Met-7, gastrin/cholecystokinin and pancreatic polypeptide. However, their axons and terminals show varying amounts of the peptides, suggesting differential transport and utilisation. Only a few cells in the thoracic ganglion are immunoreactive to Met-8 antisera. These lie close to the nerve bundles suppling the legs. In the abdominal ganglion, Met-8 immunoreactive neurons project to the muscles of the hindgut. This study suggests that the extended enkephalin-like peptides ofCalliphora may have a variety of different roles: as neurotransmitter or neuromodulator substances; in the direct innervation of effector organs; and as neurohormones.  相似文献   

15.
Clark L  Agricola HJ  Lange AB 《Peptides》2006,27(3):549-558
Proctolin-like immunoreactivity (PLI) was widely distributed in the locust, Locusta migratoria, within the central, peripheral and stomatogastric nervous systems, as well as the digestive system and retrocerebral complex. Proctolin-like immunoreactivity was observed in cells and processes of the brain and all ganglia of the ventral nerve cord. Of interest, PLI was found in the lateral neurosecretory cells, which send axons within the paired nervi corporis cardiaci II (NCC II) to the corpus cardiacum (CC). The CC contained extensive processes displaying PLI, which continued on within the paired nervi corporis allata (NCA) to the paired corpora allata (CA) where the axons entered and branched therein. The frontal and hypocerebral ganglia of the stomatogastric nervous system contained PLI within processes, resulting in a brightly staining neuropile. Each region of the gut contained PLI in axons and processes of varying patterns and densities. The paired ingluvial ganglia contained PLI, including an extensively stained neuropile and immunoreactive axons projecting through the nerves to the foregut. The hindgut contained PLI within longitudinal tracts, with lateral projections originating from the 8th abdominal ganglion via the proctodeal nerve. The midgut contained PLI in a regular latticework pattern with many varicosities and blebs. No difference in PLI in cells and processes of the central nervous system (CNS) was found between males and females.  相似文献   

16.
Summary Chains of segmental ganglia and various peripheral tissues from the leech (Hirudo medicinalis) were screened as whole-mount preparations for the presence of 5-hydroxytryptamine-like immunoreactivity. The gut was richly supplied with immunoreactive nerve fibres. Plexus of fibres, numerous of which were varicose, were found in the crop, with many immunopositive nerve cell bodies in the posterior region and a few in the anterior region. The intestine contained a few longitudinally oriented nerve fibres, while the rectum contained a dense network of non-varicose and varicose fibres. Fine immunopositive fibres were associated with the lateral blood vessel and reproductive organs. Many immunopositive nerve fibres ran in each of the paired connectives linking the segmental ganglia, and two fine varicose fibres were seen in Faivre's nerve. At least two immunopositive processes left each lateral segmental nerve and branched repeatedly, with many varicosities on the distal branches. The dorso-ventral and longitudinal body wall muscles both contained immunoreactive fibres, the plexus being more dense in the former muscle. The possible roles of the immunoreactive nerve fibres demonstrated in the various tissues of the leech have been discussed in relation to the known peripheral effects of serotoninergic neurone stimulation in the leech and to the actions of exogenously applied 5-hydroxytryptamine in these and other invertebrate tissues.  相似文献   

17.
Immunoreactivity (IR) obtained by monoclonal antibodies to substance P (SP) was studied in the asexually reproducing microturbellarians Stenostomum leucops and Microstomum lineare. The IR pattern was studied by confocal and ordinary fluorescence microscopy. In both species, IR occurs in the brain in peripheral cells, neuropilar fibres, in longitudinal cords and in the pharyngeal nervous system. The IR patterns reveal neuroanatomical details not observed with other neuroactive substances. In both species, immunopositive cells send fibers to the ciliary pits. In M. lineare, additional fibres run to more frontally located sensory structures. In S. leucops, two pharyngeal nerve rings are visualized. The pharyngeal nerve ring close to the surface associated with symmetrical immunopositive cell pairs is demonstrated for the first time, while the deeper-lying pharyngeal nerve ring has been previously demonstrated by antibodies to the molluscan cardioactive peptide FMRF-amide. Two cells with strong IR are connected by short fibres to the pharyngeal nerve ring in M. lineare. In the developing new individuals, i.e., the zooids of M. lineare, IR to SP is first revealed in nerve fibres growing out from parental lateral nerve cords towards the centre of the worm where the new brain commissure will appear. Immunopositive cells in the brain periphery and close to the developing ciliary pits appear later. Simultaneous staining by antibodies to SP and 5-HT shows that IR to SP appears later than IR to 5-HT.  相似文献   

18.
Summary The distribution of substance P (SP)-, somatostatin (SOM)-, vasoactive intestinal polypeptide (VIP)- and met-enkephalin (mENK)-immunoreactive nerve fibres and cell bodies has been studied in the gastrointestinal tract, lateral blood vessel (heart) and segmental ganglia of the leech (Hirudo medicinalis). In the crop and intestine, there was a sparse distribution of VIP-, SP-, SOM- and mENK-immunoreactive nerves, while in the intestine, a dense network of SP-, a moderate network of SOM-, and a sparse distribution of mENK- and VIP-immunoreactive nerve fibres was seen. SP-, SOM- and VIP-immunoreactive nerve cell bodies were found in all the gut regions studied, the greatest number being in the intestine. No mENK-containing cell bodies were seen in any region of the gastrointestinal tract. The heart contained a few SP-, SOM-, and VIP-immunoreactive nerve fibres, but no nerve cell bodies were found. Immunoreactive nerve cell bodies were also present in the segmentai ganglia. A typical midbody ganglion contained up to seven pairs of SP-containing neurones, four pairs of SOM-containing neurones, two pairs of VIP-containing neurones and one to three pairs of mENK-immunoreactive nerve cell bodies. The lateral pair of large SOM-immunoreactive nerve cell bodies is of similar size and correct position to the lateral N cells. One of the pairs of large SP-immunoreactive nerve cell bodies is probably identical to the Leydig cells. A tentative identification of other immunofluorescent nerve cells is attempted. Immunoreactive nerve fibres to all four peptides were distributed throughout the neuropil, those to SP being the most numerous.  相似文献   

19.
The neuroendocrine system of the homopteran, Idiocerus atkinsoni has been described, employing a neurosecretory stain. Two groups of medial neurosecretory cells (NSC) of one tinctorial type are present in the pars intercerebralis of the brain. Processes believed to be dendrites of the neurosecretory neurons lie superficially underneath the neurilemma and enclose neurosecretory material (NSM). Both the nervi corporis cardiaci, NCCI and NCCII, are branched. The branches of the former join to form an oesophageal nerve that runs on the oesophageal surface and terminates on the midgut, and those of the latter, innervate the oesophageal dilator muscles. Besides being present in the dendrite-like processes and NSC, the NSM is also seen in the NCCI, anterior part of the aorta and oesophageal nerve but not in the NCCII, corpora cardiaca (CC) and the corpus allatum (CA). It is suggested that the release of NSM into the circulation in this insect occurs through two main routes: the dendrites and the aorta. The evolution of the aorta as an exclusive neurohaemal organ in Hemiptera is discussed.  相似文献   

20.
The retrocerebral endocrine organs of the adult lemon-butterfly; Papilio demoleus have been described. The organs are subaortic lying closely behind the brain. While the nervi corporis cardiaci I (NCCI) originate from the protocerebrum of the brain, the NCCII seem to take their origin in the tritocerebrum in common with another nerve named earlier as the tegumentary nerve. The corpora cardiaca (CC) and corpora allata (CA) are closely approximated to each other obliterating the nervi corporis allati (NCA) which are conspicuous in the larva of the same species. An intercardiacal bridge (ICB) connects the CC of the two sides and acts as a possible centre of distribution for the neurosecretory material (NSM) to the gut. Histological evidence suggests that the NSM inside the CC remains intraaxonal without being primarily unloaded in the organs for storage. The intrinsic secretory cell of the CC are intimately associated with the neurosecretory fibres from the brain and bear fairly thick axons. No NSM could be detected in the CA of this insect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号