首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutation pro-220::Tn5, which increases the resistance of Escherichia coli to 3,4-dehydroproline (M. E. Stalmach, S. Grothe, and J. M. Wood, J. Bacteriol. 156:481-486, 1983), is not linked to putP, proP, or proU. It was located at 40.4 min on the E. coli chromosomal linkage map, by conjugational and transductional mapping, and is now denoted proQ220::Tn5. Proline porter II was not detectable when proQ220::Tn5 proP+ bacteria were cultivated under optimal conditions or with nutritional stress (amino acid limitation). Toxic proline analog sensitivity and proline porter II activity were partially restored to proQ220::Tn5 proP+ bacteria, but not to a proQ220::Tn5 proP219 strain, by a hyperosmotic shift and by growth under osmotic stress. Elevated expression of a proP::lacZ gene fusion, for bacteria grown under osmotic stress, was not influenced by the proQ220::Tn5 insertion. We propose that the proQ locus encodes a positive regulatory element which elevates proline porter II activity.  相似文献   

3.
4.
Smith MN  Kwok SC  Hodges RS  Wood JM 《Biochemistry》2007,46(11):3084-3095
Transporter ProP of Escherichia coli senses extracellular osmolality and responds by mediating cytoplasmic accumulation of organic solutes such as proline. Lesions at the proQ locus reduce ProP activity in vivo. ProQ was previously purified and characterized. Homology modeling predicted that ProQ possesses an alpha-helical N-terminal domain (residues 1-130) and a beta-sheet C-terminal domain (residues 181-232) connected by an unstructured linker. In this work, we tested the structural model for ProQ, explored the solubility and folding of full length ProQ and its domains in diverse buffers, and tested the impacts of the putative ProQ domains on ProP activity in vivo. Limited tryptic proteolysis of ProQ revealed protease resistant fragments corresponding to the predicted N-terminal and C-terminal domains. Polypeptides corresponding to the predicted N- and C-terminal domains could be overexpressed and purified to near homogeneity using nickel affinity, size exclusion and reversed phase chromatographies. Circular dichroism spectroscopy of the purified proteins revealed that the N-terminal domain was predominantly alpha-helical, whereas the C-terminal domain was predominantly beta-sheet, as predicted. The domains were soluble and folded in neutral buffers containing 0.6 M NaCl. The N-terminal domain was soluble and folded in 0.1 M MES (2-[N-morpholino]-ethane sulfonic acid) at pH 5.6. Despite high solubilities, the proteins were not well folded in Na citrate (0.1 M, pH 2.3). The ProQ domains and the linker were expressed at physiological levels, singly and in combination, in bacteria lacking the chromosomal proQ locus. Among these proteins, the N-terminal domain could partially complement the proQ deletion. The full length protein and a variant lacking only the linker restored full activity of the ProP protein.  相似文献   

5.
Concentrative uptake of osmoprotectants via transporter ProP contributes to the rehydration of Escherichia coli cells that encounter high osmolality media. A member of the major facilitator superfamily, ProP is activated by osmotic upshifts in whole bacteria, in cytoplasmic membrane vesicles and in proteoliposomes prepared with the purified protein. Soluble protein ProQ is also required for full osmotic activation of ProP in vivo. ProP is differentiated from structural and functional homologues by its osmotic activation and its C-terminal extension, which is predicted to form an alpha-helical coiled-coil. A synthetic polypeptide corresponding to the C-terminus of ProP (ProP-p) formed a dimeric alpha-helical coiled-coil. A derivative of transporter ProP lacking 26 C-terminal amino acids was expressed but inactive. A derivative harbouring amino acid changes K460I, Y467I and H495I (each at the core, coiled-coil 'a' position) required a larger osmotic upshift for activation than did the wild type transporter. The same changes extended, stabilized and altered the oligomeric state of the coiled-coil formed by ProP-p. Amino acid change R488I (also at the 'a' position) further increased the magnitude of the osmotic upshift required to activate ProP, reduced the activity attained and rendered ProP activation transient. Unexpectedly, replacement R488I destabilized the coiled-coil formed by ProP-p. The activity and osmotic activation of ProP were even more strongly attenuated by helix-destabilizing change I474P. These data demonstrate that the carboxyl terminal domain of ProP can form a homodimeric alpha-helical coiled-coil with unusual properties. They implicate the C-terminal domain in the osmotic activation of ProP.  相似文献   

6.
ProQ is a cytoplasmic protein with RNA chaperone activities that reside in FinO- and Hfq-like domains. Lesions at proQ decrease the level of the osmoregulatory glycine betaine transporter ProP. Lesions at proQ eliminated ProQ and Prc, the periplasmic protease encoded by the downstream gene prc. They dramatically slowed the growth of Escherichia coli populations and altered the morphologies of E. coli cells in high-salinity medium. ProQ and Prc deficiencies were associated with different phenotypes. ProQ-deficient bacteria were elongated unless glycine betaine was provided. High-salinity cultures of Prc-deficient bacteria included spherical cells with an enlarged periplasm and an eccentric nucleoid. The nucleoid-containing compartment was bounded by the cytoplasmic membrane and peptidoglycan. This phenotype was not evident in bacteria cultivated at low or moderate salinity, nor was it associated with murein lipoprotein (Lpp) deficiency, and it differed from those elicited by the MreB inhibitor A-22 or the FtsI inhibitor aztreonam at low or high salinity. It was suppressed by deletion of spr, which encodes one of three murein hydrolases that are redundantly essential for enlargement of the murein sacculus. Prc deficiency may alter bacterial morphology by impairing control of Spr activity at high salinity. ProQ and Prc deficiencies lowered the ProP activity of bacteria cultivated at moderate salinity by approximately 70% and 30%, respectively, but did not affect other osmoregulatory functions. The effects of ProQ and Prc deficiencies on ProP activity are indirect, reflecting their roles in the maintenance of cell structure.  相似文献   

7.
Transporter ProP of Escherichia coli mediates the cellular accumulation of organic zwitterions in response to increased extracellular osmolality. We compared and characterized the osmoregulation of ProP activity in cells and proteoliposomes to define the osmotic shift-induced cellular change(s) to which ProP responds. ProP-(His)(6) activity in cells and proteoliposomes was correlated with medium osmolality, not osmotic shift, turgor pressure, or membrane strain. Both K(M) and V(max) for proline uptake via ProP-(His)(6) increased with increasing medium osmolality, as would be expected if osmolality controls the proportions of transporter with inactive and active conformations. The osmolality yielding half-maximal ProP-(His)(6) activity was higher in proteoliposomes than in cells. The osmolality response of ProP is also attenuated in bacteria lacking soluble protein ProQ. Indeed, the catalytic constant (k(cat)) for ProP-(His)(6) in proteoliposomes approximated that of ProP in intact bacteria lacking ProQ. Thus, the proteoliposome system may replicate a primary osmosensory response that can be further amplified by ProQ. ProP-(His)(6) is designated as an osmosensor because its activity is dependent on the osmolality, but not the composition, of the assay medium to which the cell surface is exposed. In contrast, ProP-(His)(6) activity was dependent on both the osmolality and the composition of the lumen in osmolyte-loaded proteoliposomes. For proteoliposomes containing inorganic salts, glucose, or poly(ethylene glycol) 503, transporter activity correlated with total lumenal cation concentration. In contrast, for proteoliposomes loaded with larger poly(ethylene glycol)s, the osmolality, the lumenal cation concentration, and the lumenal ionic strength at half-maximal transporter activity decreased systematically with poly(ethylene glycol) radius of gyration (range 0.8-1.8 nm). These data suggest that ProP-(His)(6) responds to osmotically induced changes in both cytoplasmic K(+) levels and the concentration of cytoplasmic macromolecules.  相似文献   

8.
Transporter ProP of Escherichia coli (ProPEc) senses extracellular osmolality and mediates osmoprotectant uptake when it is rising or high. A replica of the ProPEc C terminus (Asp468-Arg497) forms an intermolecular alpha-helical coiled-coil. This structure is implicated in the osmoregulation of intact ProPEc, in vivo. Like that from Corynebacterium glutamicum (ProPCg), the ProP orthologue from Agrobacterium tumefaciens (ProPAt) sensed and responded to extracellular osmolality after expression in E. coli. The osmotic activation profiles of all three orthologues depended on the osmolality of the bacterial growth medium, the osmolality required for activation rising as the growth osmolality approached 0.7 mol/kg. Thus, each could undergo osmotic adaptation. The proportion of cardiolipin in a polar lipid extract from E. coli increased with extracellular osmolality so that the osmolality activating ProPEc was a direct function of membrane cardiolipin content. Group A ProP orthologues (ProPEc, ProPAt) share the C-terminal coiled-coil domain and were activated at low osmolalities. Like variant ProPEc-R488I, in which the C-terminal coiled-coil is disrupted, ProPEc derivatives that lack the coiled-coil and Group B orthologue ProPCg required a higher osmolality to activate. The amplitude of ProPEc activation was reduced 10-fold in its deletion derivatives. The coiled-coil structure is not essential for osmotic activation of ProP per se. However, it tunes Group A orthologues to osmoregulate over a low osmolality range. Coiled-coil lesions may impair both coiled-coil formation and interaction of ProPEc with amplifier protein ProQ. Cardiolipin may contribute to ProP adaptation by altering bulk membrane properties or by acting as a ProP ligand.  相似文献   

9.
Bacteria act to maintain their hydration when the osmotic pressure of their environment changes. When the external osmolality decreases (osmotic downshift), mechanosensitive channels are activated to release low molecular weight osmolytes (and hence water) from the cytoplasm. Upon osmotic upshift, osmoregulatory transporters are activated to import osmolytes (and hence water). Osmoregulatory channels and transporters sense and respond to osmotic stress via different mechanisms. Mechanosensitive channel MscL senses the increasing tension in the membrane and appears to gate when the lateral pressure in the acyl chain region of the lipids drops below a threshold value. Transporters OpuA, BetP and ProP are activated when increasing external osmolality causes threshold ionic concentrations in excess of about 0.05 M to be reached in the proteoliposome lumen. The threshold activation concentrations for the OpuA transporter are strongly dependent on the fraction of anionic lipids that surround the cytoplasmic face of the protein. The higher the fraction of anionic lipids, the higher the threshold ionic concentrations. A similar trend is observed for the BetP transporter. The lipid dependence of osmotic activation of OpuA and BetP suggests that osmotic signals are transmitted to the protein via interactions between charged osmosensor domains and the ionic headgroups of the lipids in the membrane. The charged, C-terminal domains of BetP and ProP are important for osmosensing. The C-terminal domain of ProP participates in homodimeric coiled-coil formation and it may interact with the membrane lipids and soluble protein ProQ. The activation of ProP by lumenal, macromolecular solutes at constant ionic strength indicates that its structure and activity may also respond to macromolecular crowding. This excluded volume effect may restrict the range over which the osmosensing domain can electrostatically interact. A simplified version of the dissociative double layer theory is used to explain the activation of the transporters by showing how changes in ion concentration could modulate interactions between charged osmosensor domains and charged lipid or protein surfaces. Importantly, the relatively high ionic concentrations at which osmosensors become activated at different surface charge densities compare well with the predicted dependence of 'critical' ion concentrations on surface charge density. The critical ion concentrations represent transitions in Maxwellian ionic distributions at which the surface potential reaches 25.7 mV for monovalent ions. The osmosensing mechanism is qualitatively described as an "ON/OFF switch" representing thermally relaxed and electrostatically locked protein conformations.  相似文献   

10.
The phospholipid composition of the membrane and transporter structure control the subcellular location and function of osmosensory transporter ProP in Escherichia coli. Growth in media of increasing osmolality increases, and entry to stationary phase decreases, the proportion of phosphatidate in anionic lipids (phosphatidylglycerol (PG) plus cardiolipin (CL)). Both treatments increase the CL:PG ratio. Transporters ProP and LacY are concentrated with CL (and not PG) near cell poles and septa. The polar concentration of ProP is CL-dependent. Here we show that the polar concentration of LacY is CL-independent. The osmotic activation threshold of ProP was directly proportional to the CL content of wild type bacteria, the PG content of CL-deficient bacteria, and the anionic lipid content of cells and proteoliposomes. CL was effective at a lower concentration in cells than in proteoliposomes, and at a much lower concentration than PG in either system. Thus, in wild type bacteria, osmotic induction of CL synthesis and concentration of ProP with CL at the cell poles adjust the osmotic activation threshold of ProP to match ambient conditions. ProP proteins linked by homodimeric, C-terminal coiled-coils are known to activate at lower osmolalities than those without such structures and coiled-coil disrupting mutations raise the osmotic activation threshold. Here we show that these mutations also prevent polar concentration of ProP. Stabilization of the C-terminal coiled-coil by covalent cross-linking of introduced Cys reverses the impact of increasing CL on the osmotic activation of ProP. Association of ProP C termini with the CL-rich membrane at cell poles may raise the osmotic activation threshold by blocking coiled-coil formation. Mutations that block coiled-coil formation may also block association of the C termini with the CL-rich membrane.  相似文献   

11.
The decrease in proline transport by the proline porter ProP in a ΔproQ strain has been well documented; however, the reason for this phenotype remains undefined. Previous studies have speculated that ProQ facilitates translation of proP mRNA. Here, we demonstrate that ProQ is enriched in the polysome fractions of sucrose gradient separations of E. coli lysates and the 30S fractions of lysates separated under conditions causing ribosomal subunit dissociation. Thus, ProQ is a bona fide ribosome associated protein. Analysis of proQ constructs lacking predicted structural domains implicates the N-terminal domain in ribosome association. Association with the ribosome appears to be mediated by an interaction with the mRNA being translated, as limited treatment of lysates with Micrococcal Nuclease maintains ribosome integrity but disrupts ProQ localization with polysomes. ProQ also fails to robustly bind to mRNA-free 70S ribosomes in vitro. Interestingly, deletion of proP does not disrupt the localization of ProQ with translating ribosomes, and deletion of proP in combination with the proU operon has no effect on ProQ localization. We also demonstrate that ProQ is necessary for robust biofilm formation, and this phenotype is independent of ProP. Binding studies were carried out using tryptophan fluorescence and in vitro transcribed proP mRNAs. proP is transcribed from two differentially regulated promoters, and ProQ interacts with proP mRNA transcribed from both promoters, as well as a control mRNA with similar affinities. In total, these data suggest that ProQ is positioned to function as a novel translational regulator, and its cellular role extends beyond its effects on proline uptake by ProP.  相似文献   

12.
Racher KI  Culham DE  Wood JM 《Biochemistry》2001,40(24):7324-7333
Transporter ProP of Escherichia coli, a solute-H+ symporter, can sense and respond to osmotic upshifts imposed on cells, on membrane vesicles, or on proteoliposomes that incorporate purified ProP-(His)6. In this study, proline uptake catalyzed by ProP was used as a measure of its osmotic activation, and the requirements for osmosensing were defined using the proteoliposome system. The initial rate of proline uptake increased with decreasing external pH and increasing DeltaPsi, lumen negative. Osmotic upshifts increased DeltaPsi by concentrating lumenal K+, but osmotic activation of ProP could be distinguished from this effect. Osmotic activation of ProP resulted from changes in Vmax, though osmotic shifts also increased the KM for proline. Osmotic activation could be described as a reversible, osmotic upshift-dependent transition linking (at least) two transporter protein conformations. No correlation was observed between ProP activation and the position of the anions of activating sodium salts within the Hofmeister series of solutes. Both the magnitude of the osmotic upshift required to activate ProP and the ProP activity attained were similar for membrane-impermeant osmolytes, including NaCl, glucose, and PEG 600. The membrane-permeant osmolytes glycerol, urea, PEG 62, and PEG 106 failed to activate ProP. Two poly(ethylene glycol)s, PEG 150 and PEG 200, were membrane-permeant and did not cause liposome shrinkage, but they did partially activate ProP-(His)6.  相似文献   

13.
Protein ProP acts as an osmosensory transporter in diverse bacteria. C-Terminal residues 468-497 of Escherichia coli ProP (ProPEc) form a four-heptad homodimeric alpha-helical coiled coil. Arg 488, at a core heptad a position, causes it to assume an antiparallel orientation. Arg in the hydrophobic core of coiled coils is destabilizing, but Arg 488 forms stabilizing interstrand salt bridges with Asp 475 and Asp 478. Mutation R488I destabilizes the coiled coil and elevates the osmotic pressure at which ProPEc activates. It may switch the coiled-coil orientation to parallel by eliminating the salt bridges and increasing the hydrophobicity of the core. In this study, mutations D475A and D478A, which disrupt the salt bridges without increasing the hydrophobicity of the coiled-coil core, had the expected modest impacts on the osmotic activation of ProPEc. The five-heptad coiled coil of Agrobacterium tumefaciens ProP (ProPAt) has K498 and R505 at a positions. Mutation K498I had little effect on the osmotic activation of ProPAt, and ProPAt-R505I was activated only at high osmotic pressure; on the other hand, the double mutant was refractory to osmotic activation. Both a synthetic peptide corresponding to ProPAt residues 478-516 and its K498I variant maintained the antiparallel orientation. The single R505I substitution created an unstable coiled coil with little orientation preference. Double mutation K498I/R505I switched the alignment, creating a stable parallel coiled coil. In vivo cross-linking showed that the C-termini of ProPAt and ProPAt-K498I/R505I were antiparallel and parallel, respectively. Thus, the antiparallel orientation of the ProP coiled coil is contingent on Arg in the hydrophobic core and interchain salt bridges. Two key amino acid replacements can convert it to a stable parallel structure, in vitro and in vivo. An intermolecular antiparallel coiled coil, present on only some orthologues, lowers the osmotic pressure required to activate ProP. Formation of a parallel coiled coil renders ProP inactive.  相似文献   

14.
Membrane transporter ProP from Escherichia coli senses extracellular osmolality and responds by mediating the uptake of osmoprotectants such as glycine betaine when osmolality is high. Earlier EPR and NMR studies showed that a peptide replica of the cytoplasmic ProP carboxyl terminus (residues D468-R497) forms a homodimeric, antiparallel, alpha-helical coiled coil in vitro stabilized by electrostatic interactions involving R488. Amino acid replacement R488I disrupted coiled-coil formation by the ProP peptide, elevated the osmolality at which ProP became active, and rendered the osmolality response of ProP transient. In the present study, either E480 or K473 was replaced with cysteine (Cys) in ProP, a Cys-less, fully functional, histidine-tagged ProP variant, to use Cys-specific cross-linking approaches to determine if antiparallel coiled-coil formation and dimerization of the intact protein occur in vivo. The Cys at positions 480 would be closer in an antiparallel dimer than those at positions 473. These replacements did not disrupt coiled-coil formation by the ProP peptide. Partial homodimerization of variant ProP-E480C could be demonstrated in vivo and in membrane preparations via Cys-specific cross-linking with dithiobis(maleimidoethane) or by Cys oxidation to cystine by copper phenanthroline. In contrast, these reagents did not cross-link ProP with Cys at position 133 or 241. Cross-linking of ProP with Cys at position 473 was limited and occurred only if ProP was overexpressed, consistent with an antiparallel orientation of the coiled coil in the intact protein in vivo. Although replacement E480C did not alter transporter activity, replacement K473C reduced the extent and elevated the threshold for osmotic activation. K473 may play a role in ProP structure and function that is not reflected in altered coiled-coil formation by the corresponding peptide. Substitution R488I affected the activities of ProP-(His)(6), ProP-E480C, and ProP-K473C as it affected the activity of ProP. Surprisingly, it did not eliminate cross-linking of Cys at position 480, and it elevated cross-linking at position 473, even when ProP was expressed at physiological levels. This suggested that the R488I substitution may have changed the relative orientation of the C-termini within the dimeric protein from antiparallel to parallel, resulting in only transient osmotic activation. These results suggest that ProP is in monomer-dimer equilibrium in vivo. Dimerization may be mediated by C-terminal coiled-coil formation and/or by interactions between other structural domains, which in turn facilitate C-terminal coiled-coil formation. Antiparallel coiled-coil formation is required for activation of ProP at low osmolality.  相似文献   

15.
Cells control their own hydration by accumulating solutes when they are exposed to high osmolality media and releasing solutes in response to osmotic down-shocks. Osmosensory transporters mediate solute accumulation and mechanosensitive channels mediate solute release. Escherichia coli serves as a paradigm for studies of cellular osmoregulation. Growth in media of high salinity alters the phospholipid headgroup and fatty acid compositions of bacterial cytoplasmic membranes, in many cases increasing the ratio of anionic to zwitterionic lipid. In E. coli, the proportion of cardiolipin (CL) increases as the proportion of phosphatidylethanolamine (PE) decreases when osmotic stress is imposed with an electrolyte or a non-electrolyte. Osmotic induction of the gene encoding CL synthase (cls) contributes to these changes. The proportion of phosphatidylglycerol (PG) increases at the expense of PE in cls bacteria and, in Bacillus subtilis, the genes encoding CL and PG synthases (clsA and pgsA) are both osmotically regulated. CL is concentrated at the poles of diverse bacterial cells. A FlAsH-tagged variant of osmosensory transporter ProP is also concentrated at E. coli cell poles. Polar concentration of ProP is CL-dependent whereas polar concentration of its paralogue LacY, a H+-lactose symporter, is not. The proportion of anionic lipids (CL and PG) modulates the function of ProP in vivo and in vitro. These effects suggest that the osmotic induction of CL synthesis and co-localization of ProP with CL at the cell poles adjust the osmolality range over which ProP activity is controlled by placing it in a CL-rich membrane environment. In contrast, a GFP-tagged variant of mechanosensitive channel MscL is not concentrated at the cell poles but anionic lipids bind to a specific site on each subunit of MscL and influence its function in vitro. The sub-cellular locations and lipid dependencies of other osmosensory systems are not known. Varying CL content is a key element of osmotic adaptation by bacteria but much remains to be learned about its roles in the localization and function of osmoregulatory proteins.  相似文献   

16.
In order to circumvent deleterious effects of hypo- and hyperosmotic conditions in its environment, Corynebacterium glutamicum has developed a number of mechanisms to counteract osmotic stress. The first response to an osmotic upshift is the activation of uptake mechanisms for the compatible solutes betaine, proline, or ectoine, namely BetP, EctP, ProP, LcoP and PutP. BetP, the most important uptake system responds to osmotic stress by regulation at the level of both protein activity and gene expression. BetP was shown to harbor three different properties, i.e. catalytic activity (betaine transport), sensing of appropriate stimuli (osmosensing) and signal transduction to the catalytic part of the carrier protein which adapts its activity to the extent of osmotic stress (osmoregulation). BetP is comprised of 12 transmembrane segments and carries N- and C-terminal domains, which are involved in osmosensing and/or osmoregulation. Recent results on molecular properties of these domains indicate the significance of particular amino acids within the terminal 25 amino acids of the C-terminal domain of BetP for the process of osmosensing and osmoregulation.  相似文献   

17.
The prc gene, which is involved in cleavage of the C-terminal peptide from the precursor form of penicillin-binding protein 3 (PBP 3) of Escherichia coli, was cloned and mapped at 40.4 min on the chromosome. The gene product was identified as a protein of about 80 kDa in maxicell and in vitro systems. Fractionation of the maxicells producing the product suggested that the product was associated with the periplasmic side of the cytoplasmic membrane. This was consistent with the notion that the C-terminal processing of PBP 3 probably occurs outside the cytoplasmic membrane: the processing was found to be dependent on the secY and secA functions, indicating that the prc product or PBP 3 or both share the translocation machinery with other extracytoplasmic proteins. DNA sequencing analysis of the prc gene region identified an open reading frame, with two possible translational starts 6 bp apart from each other, that could code for a product with a calculated molecular weight of 76,667 or 76,432. The prc mutant was sensitive to thermal and osmotic stresses. Southern analysis of the chromosomal DNA of the mutant unexpectedly revealed that the mutation was a deletion of the entire prc gene and thus that the prc gene is conditionally dispensable. The mutation resulted in greatly reduced heat shock response at low osmolarity and in leakage of periplasmic proteins.  相似文献   

18.
A Tn5 insertion which led to increased susceptibility to multiple drugs, including tetracycline, chloramphenicol, nalidixic acid, erythromycin, spectinomycin, norfloxacin, and novobiocin, was identified in Escherichia coli. Cloning and sequence studies showed that the insertion was in the previously identified prc gene at min 40.4. The prc product is known to function as a protease linked to processing of penicillin-binding protein 3 and lambda repressor and when absent to allow some leakage of periplasmic constituents. Complementation studies with the prc gene on plasmids showed complete recovery of parental levels of susceptibility to all drugs except chloramphenicol, with which only partial reversion to wild-type levels was observed.  相似文献   

19.
PsiB, an anti-SOS protein, shown previously to prevent activation of RecA protein, was purified from the crude extract of PsiB overproducing cells. PsiB is probably a tetrameric protein, whose subunit has a sequence-deduced molecular mass of 15741 daltons. Using an immuno-assay with anti-PsiB antibodies, we have monitored PsiB cell concentrations produced by F and R6-5 plasmids: the latter type produces a detectable level of PsiB protein while the former does not. The discrepancy can be assigned to a Tn10 out-going promoter located upstream of psiB. When we inserted a Tn10 promoter upstream of F psiB, the F PsiB protein concentration reached the level of R6-5 PsiB. We describe here the physiological role that PsiB protein may have in the cell and how it causes an anti-SOS function. We observed that PsiB protein was transiently expressed by a wild-type F sex factor during its transmission to an Escherichia coli K-12 recipient. In an F+ x F- cross, PsiB concentration increased at least 10-fold in F- recipient bacteria after 90 minutes and declined thereafter; the psiB gene may be repressed when F plasmid replicates vegetatively. PsiB protein may be induced zygotically so as to protect F single-stranded DNA transferred upon conjugation. PsiB protein, when overproduced, may interfere with RecA protein at chromosomal single-stranded DNA sites generated by discontinuous DNA replication, thus causing an SOS inhibitory phenotype.  相似文献   

20.
The ProP protein of Escherichia coli is an osmoregulatory H+-compatible solute cotransporter. ProP is activated by an osmotic upshift in both whole cells and membrane vesicles. We are using biochemical and biophysical techniques to explore the osmosensory and catalytic mechanisms of ProP. We now report the purification and reconstitution of the active transporter. Protein purification was facilitated by the addition of six histidine (His) codons to the 3' end of proP. The recombinant gene was overexpressed from the E. coli galP promoter, and ProP-(His)6 was shown to be functionally equivalent to wild-type ProP by enzymatic assay of whole cells. ProP-(His)6, purified by Ni2+ (NTA) affinity chromatography, cross-reacted with antibodies raised against the ProP protein. ProP-(His)6 was reconstituted into Triton X-100 destabilized liposomes prepared with E. coli phospholipid. The reconstituted transporter mediated proline accumulation only if (1) a membrane potential was generated by valinomycin-mediated K+ efflux and (2) the proteoliposomes were subjected to an osmotic upshift (0.6 M sucrose). Activity was also stimulated by DeltapH. Pure ProP acts, in the proteoliposome environment, as sensor, transducer, and respondent to a hyperosmotic shift. It is the first such osmosensor to be isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号