首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Together with impaired glucose uptake in skeletal muscle, elevated hepatic gluconeogenesis is largely responsible for the hyperglycemic phenotype in type II diabetic patients. Intracellular glucocorticoid and cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent signaling pathways contribute to aberrant hepatic glucose production through the induction of gluconeogenic enzyme gene expression. Here we show that the coactivator-associated arginine methyltransferase 1 (CARM1) is required for cAMP-mediated activation of rate-limiting gluconeogenic phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) and glucose-6-phosphatase genes. Mutational analysis showed that CARM1 mediates its effect via the cAMP-responsive element within the PEPCK promoter, which is identified here as a CARM1 target in vivo. In hepatocytes, endogenous CARM1 physically interacts with cAMP-responsive element binding factor CREB and is recruited to the PEPCK and glucose-6-phosphatase promoters in a cAMP-dependent manner associated with increased promoter methylation. CARM1 might, therefore, represent a critical component of cAMP-dependent glucose metabolism in the liver.  相似文献   

2.
3.
4.
5.
6.
Novel concepts in insulin regulation of hepatic gluconeogenesis   总被引:1,自引:0,他引:1  
The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalytic subunit glucose-6-phosphatase (G-6-Pase) is regarded as a potential strategy for the treatment of metabolic aberrations associated with this disease. However, such intervention requires a detailed understanding of the molecular mechanisms involved in the regulation of this process. Glucagon and glucocorticoids are known to increase hepatic gluconeogenesis by inducing the expression of PEPCK and G-6-Pase. The coactivator protein PGC-1 has been identified as an important mediator of this regulation. In contrast, insulin is known to suppress both PEPCK and G-6-Pase gene expression by the activation of PI 3-kinase. However, PI 3-kinase-independent pathways can also lead to the inhibition of gluconeogenic enzymes. This review focuses on signaling mechanisms and nuclear events that transduce the regulation of gluconeogenic enzymes.  相似文献   

7.
Leptin and insulin share some hypothalamic signaling molecules, but their central administration induces different effects on hepatic glucose fluxes. Acute insulin infusion in the third cerebral ventricle inhibits endogenous glucose production (GP), whereas acute leptin infusion stimulates gluconeogenesis but does not alter GP because of a compensatory decrease in glycogenolysis. Because melanocortin agonists also stimulate hepatic gluconeogenesis, here we examined whether central melanocortin blockade modifies the acute effects of leptin on GP, on gluconeogenesis, on glycogenolysis, and/or on the hepatic expression of the gluconeogenic enzymes glucose-6-phosphatase (Glc-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Systemic or central administration of leptin alone did not alter GP, despite increasing both the rate of gluconeogenesis and the expression of Glc-6-Pase and PEPCK. When activation of the central melanocortin pathway was prevented, the effects of leptin on gluconeogenesis, Glc-6-Pase, and PEPCK were abolished, and a marked suppression of glycogenolysis resulted in decreased GP. We conclude that leptin regulates hepatic glucose fluxes through a melanocortin-dependent pathway leading to stimulation of gluconeogenesis and a melanocortin-independent pathway causing inhibition of GP and glycogenolysis.  相似文献   

8.
9.
10.
The ability of insulin to suppress gluconeogenesis in type II diabetes mellitus is impaired; however, the cellular mechanisms for this insulin resistance remain poorly understood. To address this question, we generated transgenic (TG) mice overexpressing the phosphoenolpyruvate carboxykinase (PEPCK) gene under control of its own promoter. TG mice had increased basal hepatic glucose production (HGP), but normal levels of plasma free fatty acids (FFAs) and whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp compared with wild-type controls. The steady-state levels of PEPCK and glucose-6-phosphatase mRNAs were elevated in livers of TG mice and were resistant to down-regulation by insulin. Conversely, GLUT2 and glucokinase mRNA levels were appropriately regulated by insulin, suggesting that insulin resistance is selective to gluconeogenic gene expression. Insulin-stimulated phosphorylation of the insulin receptor, insulin receptor substrate (IRS)-1, and associated phosphatidylinositol 3-kinase were normal in TG mice, whereas IRS-2 protein and phosphorylation were down-regulated compared with control mice. These results establish that a modest (2-fold) increase in PEPCK gene expression in vivo is sufficient to increase HGP without affecting FFA concentrations. Furthermore, these results demonstrate that PEPCK overexpression results in a metabolic pattern that increases glucose-6-phosphatase mRNA and results in a selective decrease in IRS-2 protein, decreased phosphatidylinositol 3-kinase activity, and reduced ability of insulin to suppress gluconeogenic gene expression. However, acute suppression of HGP and glycolytic gene expression remained intact, suggesting that FFA and/or IRS-1 signaling, in addition to reduced IRS-2, plays an important role in downstream insulin signal transduction pathways involved in control of gluconeogenesis and progression to type II diabetes mellitus.  相似文献   

11.
Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1–7 (early), 8–14 (mid) and 15–21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure.  相似文献   

12.
13.
We studied in rats the expression of genes involved in gluconeogenesis from glutamine and glycerol in the small intestine (SI) during fasting and diabetes. From Northern blot and enzymatic studies, we report that only phosphoenolpyruvate carboxykinase (PEPCK) activity is induced at 24 h of fasting, whereas glucose-6-phosphatase (G-6-Pase) activity is induced only from 48 h. Both genes then plateau, whereas glutaminase and glycerokinase strikingly rebound between 48 and 72 h. The two latter genes are fully expressed in streptozotocin-diabetic rats. From arteriovenous balance and isotopic techniques, we show that the SI does not release glucose at 24 h of fasting and that SI gluconeogenesis contributes to 35% of total glucose production in 72-h-fasted rats. The new findings are that 1) the SI can quantitatively account for up to one-third of glucose production in prolonged fasting; 2) the induction of PEPCK is not sufficient by itself to trigger SI gluconeogenesis; 3) G-6-Pase likely plays a crucial role in this process; and 4) glutaminase and glycerokinase may play a key potentiating role in the latest times of fasting and in diabetes.  相似文献   

14.
This paper provides molecular evidence for a liver glyconeogenic pathway, that is, a concomitant activation of hepatic gluconeogenesis and glycogenesis, which could participate in the mechanisms that cope with amino acid excess in high-protein (HP) fed rats. This evidence is based on the concomitant upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, downregulation of glucose 6-phosphatase catalytic subunit (G6PC1) gene expression, an absence of glucose release from isolated hepatocytes and restored hepatic glycogen stores in the fed state in HP fed rats. These effects are mainly due to the ability of high physiological concentrations of portal blood amino acids to counteract glucagon-induced liver G6PC1 but not PEPCK gene expression. These results agree with the idea that the metabolic pathway involved in glycogen synthesis is dependent upon the pattern of nutrient availability. This nonoxidative glyconeogenic disposal pathway of gluconeogenic substrates copes with amino excess and participates in adjusting both amino acid and glucose homeostasis. In addition, the pattern of PEPCK and G6PC1 gene expression provides evidence that neither the kidney nor the small intestine participated in gluconeogenic glucose production under our experimental conditions. Moreover, the main glucose-6-phosphatase (G6Pase) isoform expressed in the small intestine is the ubiquitous isoform of G6Pase (G6PC3) rather than the G6PC1 isoform expressed in gluconeogenic organs.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号