首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
微卫星DNA标记及其在鱼类遗传多样性研究中的应用   总被引:1,自引:0,他引:1  
微卫星DNA作为第二代分子遗传标记是高等真核生物基因组中种类多、分布广、具有高度的多态性和杂合度的分子标记,由于其具有多态性检出率高、信息含量大、共显性标记、实验操作简单、结果稳定可靠等优点,已经成为种群遗传学研究中被广泛应用的分子遗传标记。微卫星DNA标记技术在鱼类的群体遗传结构的分析、物种遗传多样性的鉴定以及遗传基因连锁图谱的构建等方面已初步得到应用。该文就微卫星技术的原理方法,在鱼类遗传多样性研究中的应用概况以及应用范围和注意事项等方面进行综述。为微卫星技术在鱼类遗传多样性研究中应用提供了理论参考。  相似文献   

2.
DNA分子标记在动物个体识别与亲权鉴定方面的应用   总被引:9,自引:0,他引:9  
自从DNA分子标记技术建立以来,各种DNA分子标记相继被广泛地应用于遗传图谱的构建,评估遗传多样性以及个体识别,亲权鉴定等方面,综述了利用DNA分子标记技术,进行动物个体识别与亲权鉴定的原理,研究进展,现状及其应用前景与存在的问题。  相似文献   

3.
AFLP分子标记技术在昆虫学研究中的应用   总被引:10,自引:0,他引:10  
AFLP分子标记技术是一种建立在PCR技术和RFLP标记基础上的新的DNA指纹分析技术 ,具有多态性丰富、结果稳定可靠、重复性好、所需DNA量少、可以在不知道基因组序列的情况下进行研究等特点 ,现已广泛用于构建遗传图谱、遗传多样性研究、系统进化及分类学、遗传育种和品质鉴定以及基因定位等方面。该文介绍了AFLP标记技术的原理以及在昆虫学研究中的应用。  相似文献   

4.
微卫星DNA标记技术及其在遗传多样性研究中的应用   总被引:27,自引:0,他引:27  
微卫星DNA的高突变率、中性、共湿性及其在真核基因组中的普遍性,使其成为居群遗传学研究、种质资源鉴定、亲缘关系分析和图谱构建的优越的分子标记。本研究系统介绍了微卫星DNA在结构和功能上的特点,并对微卫星DNA标记技术应用的遗传学机理和一般方法进行了扼要的阐述。另外,本研究还探讨了微卫星DNA标记技术在遗传多样性研究中的应用现状,并进一步提出其发展前景。  相似文献   

5.
通过对贵妃鸡自别雌雄的快、慢羽羽速基因的KAPD分子标记,研究分析贵妃鸡基因组的遗传多样性,为家禽的配套养殖和良种繁育在分子水平上提供理论依据。采用随机引物扩增多态性DNA(KAPD)分子标记技术,分析了广东海洋大学家禽育种中心的名优珍禽贵妃鸡快羽和慢羽2个品系的12个样品鸡之间,基因组DNA的遗传多样性,并进行了快羽、慢羽及其雄、雌间聚类分析。  相似文献   

6.
ISSR标记技术在药用植物资源中的研究进展及应用   总被引:2,自引:0,他引:2  
简单重复系列区间(inter-simple sequence repeat,ISSR)是在简单重复序列(simple sequence repeat,SSR)基础上发展起来的一种新型分子标记技术。目前药用植物研究与开发面临资源枯竭、药效物质不明确及质量难以控制等难题,DNA分子标记技术,包括ISSR技术为上述难题提供了新的解决办法。比较了几种常用分子标记的优缺点,最后着重介绍了目前广泛应用于药用植物研究中的DNA分子标记ISSR的技术原理和特点,综述了ISSR分子标记技术在药用植物的遗传多样性和遗传结构、种质资源鉴定、中药品质鉴定,以及遗传图谱等方面的研究进展及应用前景,旨为药用植物的开发和利用提供参考。  相似文献   

7.
几种分子标记技术的比较及其在中药材鉴定中的应用   总被引:1,自引:0,他引:1  
分子标记技术是指能够反映生物个体或种群之间基因组中某种差异的特异性片段,是DNA水平上遗传多态性的反映,大多数DNA分子标记是以电泳谱带的形式表现个体之间的DNA差异。对几种分子标记技术进行了比较,并就其在中药材鉴定方面的应用以及意义做以综述。  相似文献   

8.
自1997年美国农业部启动5种水产养殖动物基因组计划以来,在不到10年的时间里,世界各国都相继开展了本国主要水产养殖动物基因组研究。截至2005年底,有近17种海淡水养殖动物公布了遗传连锁图谱:属于高密度连锁图谱的有虹鳟和大西洋鲑(标记数超过1 000);属于中密度遗传连锁图谱的有罗非鱼、沟鲶、黑虎虾、日本牙鲆和欧洲海鲈(标记数为400—1 000);属于低密度遗传连锁图谱的有泰国的胡鲶,中国的栉孔扇贝、鲤鱼,日本的黄尾shi,美国的牡蛎等近10种养殖种类(标记数少于400)。水产养殖动物遗传连锁图谱的构建和发展,促进了一些与经济性状(如生长、抗逆、发育等)相关的数量性状位点(QTL)的定位研究。然而,QTL定位研究目前只在具有中高密度遗传连锁图谱的鲑科鱼类(虹鳟、大西洋鲑和北极嘉鱼)、罗非鱼、沟鲶和日本牙鲆等种类中开展,而且定位研究仍处在初级水平。遗传连锁图谱的高分辨率和QTL在图谱上的精确定位,是今后能否实现对主要水产养殖动物的经济性状进行遗传操作的技术保证,同时也是实现分子标记或基因辅助育种在水产养殖动物中成功运用的制胜法宝。  相似文献   

9.
简单重复序列间扩增分子标记技术及其应用   总被引:1,自引:0,他引:1  
简单重复序列间扩增(ISSR)技术是在PCR基础上发展起来的一种新型的分子标记技术,因其标记通常为显性标记,呈孟德尔遗传,且在进行PCR反应时,稳定性和多态性均很好,而成为是非常理想的分子标记技术.将从ISSR分子标记技术的原理及其在绘制DNA指纹图谱、遗传多样性分析、种质鉴定等领域的应用进行综述.  相似文献   

10.
分子标记技术在烟草种质资源研究中的应用进展   总被引:2,自引:0,他引:2  
DNA分子标记作为新发展起来的一种遗传标记形式,凭借其可靠有效等优点,在农业科学研究中的应用越来越广泛。综述了几种分子标记技术(RAPD、AFLP、ISSR)在烟草种资源中的应用进展,分析了分子标记技术在烟草种资源及遗传多样性研究中存在的问题及今后发展方向。  相似文献   

11.
The most economically important form of aquaculture is fish farming, which is an industry that accounts for an ever increasing share of world fishery production. Molecular markers can be used to enhance the productivity of the aquaculture and fish industries to meet the increasing demand. Molecular markers can be identified via a DNA test regardless of the developmental stage, age or environmental challenges experienced by the organism. The application of 16s and cytochrome b markers has enabled rapid progress in investigations of genetic variability and inbreeding, parentage assignments, species and strain identification and the construction of high resolution genetic linkage maps for aquaculture fisheries. In this review, the advantages of principles and potential power tools of 16s and cytochrome b markers are discussed. Main findings in term of trend, aspects and debates on the reviewed issue made from the model of aquatic species for the benefit of aquaculture genomics and aquaculture genetics research are discussed. The concepts in this review are illustrated with various research examples and results that relate theory to reality and provide a strong review of the current status of these biotechnology topics.  相似文献   

12.
In 1985, Alec Jeffreys reported the development of multilocus DNA fingerprinting by Southern blot-detection of hypervariable minisatellites or variable number of tandem repeat (VNTR) loci. This technology found immediate application to various forensic and scientific problems, including fisheries and aquaculture. By 1989, however, it was recognized by many researchers that inherent problems exist in the application of multilocus fingerprinting to large sample sizes as might occur in fisheries and aquaculture genetic studies. As such, individual VNTRs were cloned for single-locus DNA fingerprinting. Although single-locus fingerprinting ameliorates many of the problems associated with multilocus DNA fingerprinting, it suffers from the problem that electrophorectic anomalies of band migration within and between gels necessitates binning of alleles, thus underestimating genetic variability in a given population. Amplification of microsatellite loci by the polymerase chain reaction, however, solved many of the problems of Southern blot-based DNA fingerprinting. Moreover, microsatellites exhibit attributes that make them particularly suitable as genetic markers for numerous applications in aquaculture and fisheries research: (1) they are abundant in the genome; (2) they display varying levels of polymorphism; (3) alleles exhibit codominant Mendelian inheritance; (4) minute amounts of tissue are required for assay (e.g., dried scales or otoliths); (5) loci are conserved in related species; (6) potential for automated assay. Recent innovations in DNA fingerprinting technology developed over the past 5 years are discussed with special emphasis on microsatellites and their application to fisheries and aquaculture, e.g., behavioural and population genetics of wild species, and selection and breeding programmes for aquaculture broodstock.  相似文献   

13.
牦牛分子遗传多样性研究进展   总被引:5,自引:0,他引:5  
遗传多样性研究可有效地揭示牦牛的遗传变异, 是牦牛群体遗传学研究的主要内容之一。自20世纪70年代以来, 人们已对牦牛的体形外貌特征、染色体核型(带型)、生理生化特性和DNA序列变异等进行了较为深入地研究。随着分子遗传学和DNA测序技术的迅猛发展, 近年来的研究主要集中在牦牛的分子遗传多样性。文章对近15年来牦牛mtDNA和核基因组分子标记及侯选基因多样性的研究现状进行了综述, 对前景进行展望, 以期为牦牛群体基因组学等研究提供依据。  相似文献   

14.
The genus Porphyra (and its sister genus Pyropia) contains important red algal species that are cultivated and/or harvested for human consumption, sustaining a billion-dollar aquaculture industry. A vast amount of research has been focused on species of this genus, including studies on genetics and genomics among other areas. Twelve novel microsatellite markers were developed here for Porphyra linearis. Markers were characterized using 32 individuals collected from four natural populations of P. linearis with total heterozygosity varying from 0.098 to 0.916. The number of alleles per locus ranged from 2 to 18. All markers showed cross amplification with Porphyra umbilicalis and/or Porphyra dioica. These polymorphic microsatellite markers are useful for investigating population genetic diversity and differentiation in P. linearis and may become useful for other genetic research on the reproductive biology of this important species.  相似文献   

15.
Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective.  相似文献   

16.
An interspecific artificial hybrid was produced between two economically important aquaculture flatfish: olive flounder (Paralichthys olivaceus) and starry flounder (P. stellatus). This hybrid displays the rapid growth characteristic of the former and tolerance to low temperatures and low salinity of the latter, but the genetics of inheritance in this hybrid have not been elucidated. Polymorphic microsatellite markers developed for P. olivaceus and P. stellatus were tested to determine if these markers can be used for analysis of parentage and genetic inheritance. Multiplex PCR using two primer sets that were specific to each species produced PCR products of different sizes; these could be used for the identification of interspecific hybrids. Among the 192 primers derived from olive flounder, 25.5% of the primer sets successfully amplified genomic DNA from starry flounder, and 23% of the 56 primer sets originating from starry flounder amplified DNA from olive flounder. Analysis of genetic inheritance in the hybrid using seven of the 62 microsatellite markers common to both species demonstrated classic Mendelian inheritance of these markers in the hybrid progeny, with the exception of one locus identified as a null allele in the hybrid. These results demonstrate that cross-specific microsatellite markers can be used tools for parentage analysis of hybrid flatfish, for mapping quantitative trait loci, for marker-assisted selective breeding, and for studies of the evolution of fish.  相似文献   

17.
Dissecting the genetic control of variation in complex traits, such as disease resistance and agricultural-product quality, remains very challenging. Farm animals are now well placed to bridge the gap between human biology and traditional model species. Livestock species share with model species the benefits of controlled breeding, and their biology is often much closer to that of humans. Genetic research in model species focuses on differences between homogenous lines, whereas genetic research in humans focuses on genetic variation within populations. Livestock genetics has the strengths of both human and model-species genetics because researchers can exploit both the abundant genetic variation between divergent breeds and the variation that is segregating within breeds. Therefore, livestock genomics fills the void where the genetics of model species proves intractable or where model species are not a good proxy for human biology.  相似文献   

18.
DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales.  相似文献   

19.
20.
Red clover is an important forage legume species for temperate regions and very little is known about the genetic organization of its breeding populations. We used random amplified polymorphic DNA (RAPD) genetic markers to address the genetic diversity and the distribution of variation in 20 breeding populations and cultivars from Chile, Argentina, Uruguay, and Switzerland. Genetic distances were calculated for all possible pairwise combinations. A high level of polymorphism was found and the proportion of polymorphic loci across populations was 74.2%. A population derived from a non-certified seedlot displayed a higher proportion of polymorphic loci than its respective certified seedlot. Gene diversity values and population genetics parameters suggest that the populations analyzed are diverse. An analysis of molecular variance (AMOVA) revealed that the largest proportion of variation (80.4%) resides at the within population level. RAPD markers are a useful tool for red clover breeding programs. A dendrogram based on genetic distances divided the breeding populations analyzed into three distinct groups. The amount and partition of diversity observed can be of value in identifying the populations that parents of synthetic cultivars are derived from and to exploit the variation available in the populations analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号