首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In red blood cells ankyrin (ANK-1) provides the primary linkage between the erythrocyte membrane skeleton and the plasma membrane. We have previously demonstrated that a 271-bp 5'-flanking region of the ANK-1 gene has promoter activity in erythroid, but not non-erythroid, cell lines. To determine whether the ankyrin promoter could direct erythroid-specific expression in vivo, we analyzed transgenic mice containing the ankyrin promoter fused to the human (A)gamma-globin gene. Sixteen of 17 lines expressed the transgene in erythroid cells indicating nearly position-independent expression. We also observed a significant correlation between the level of Ank/(A)gamma-globin mRNA and transgene copy number. The level of Ank/(A)gamma mRNA averaged 11% of mouse alpha-globin mRNA per gene copy at all developmental stages. The addition of the HS2 enhancer from the beta-globin locus control region to the Ank/(A)gamma-globin transgene resulted in Ank/(A)gamma-globin mRNA expression in embryonic and fetal erythroid cells in six of eight lines but resulted in absent or dramatically reduced levels of Ank/(A)gamma-globin mRNA in adult erythroid cells in eight of eight transgenic lines. These data indicate that the minimal ankyrin promoter contains all sequences necessary and sufficient for erythroid-specific, copy number-dependent, position-independent expression of the human (A)gamma-globin gene.  相似文献   

4.
5.
6.
Here, we show that in the chicken genome, the domain of alpha-globin genes is preceded by a CpG island of which the downstream part ( approximately 0.65 kbp) is heavily methylated in lymphoid cells; it is either non-methylated or undermethylated in erythroid cells. Recombinant plasmids were constructed with the corresponding DNA fragment (called "uCpG") placed upstream to a reporter CAT gene expressed from the promoter of the alpha(D) chicken globin gene. Selective methylation of CpG dinucleotides within the uCpG fragment suppressed fivefold the expression of the CAT gene, when neither this gene itself nor the alpha(D) promoter were methylated. Methylation of CpG dinucleotides within the alpha(D) gene promoter did not modify the suppression effect exerted by methylated uCpG. We interpret these results within the frame of the hypothesis postulating, that methylation of the upstream CpG island of the chicken alpha-globin gene domain may play an essential role in silencing the alpha-globin genes in non-erythroid cells.  相似文献   

7.
8.
9.
An enhancer element lies 3'' to the human A gamma globin gene.   总被引:29,自引:1,他引:28       下载免费PDF全文
D M Bodine  T J Ley 《The EMBO journal》1987,6(10):2997-3004
  相似文献   

10.
11.
12.
13.
A beta-globin/TK fusion gene was microinjected into non-erythroid cells (Ltk- cells) and erythroid cells (murine erythroleukemia (MEL) cells), and the interactions of the regulatory cellular factors with the beta-globin sequences were investigated by the in vivo competition experiment. The fusion gene was expressed efficiently in Ltk- cells. This expression was inhibited by a co-injection with a three-fold molar excess of the 5'-flanking sequence of the beta-globin gene or with a nine-fold molar excess of the mammary tumor virus LTR, but not with the alpha-globin gene. The fusion gene was expressed very poorly in the uninduced MEL cells and highly in the induced MEL cells. The co-injection of the beta-globin gene did not affect expression in the MEL cells in either uninduced or induced conditions.  相似文献   

14.
15.
16.
In contrast to other globin genes, the human and rabbit alpha-globin genes are expressed in transfected erythroid and nonerythroid cells in the absence of an enhancer. This enhancer-independent expression of the alpha-globin gene requires extensive sequences not only from the 5' flanking sequence but also from the intragenic region. However, the features of these internal sequences that are responsible for their positive effect are unclear. We tested several possible determinants of this activity. One possibility is that a previously identified array of discrete binding sites for known and potential regulatory proteins within the alpha-globin gene comprise an intragenic enhancer specific for the alpha-globin promoter, but directed rearrangements of the sequences show that this is not the case. Alternatively, the promoter may extend into the gene, with the function of the discrete binding sites being dependent on maintenance of their proper positions and orientations relative to the 5' flanking sequence. However, the positive effects observed in gene fusions do not localize to a discrete region of the alpha-globin gene and the results of internal deletions and point mutations argue against a required role of the targeted discrete binding sites. A third possibility is that the CpG island, which includes both the 5' flanking and intragenic regions associated with the positive activity, may itself have a more general effect on expression in transfected cells. Indeed, we show that the size of the CpG island in constructs correlates with the level of gene expression. Furthermore, the alpha-globin promoter is more active in the context of a previously inactive CpG island than in an A+T-rich context, showing that the CpG island provides an environment more permissive for expression. These effects are seen only after integration, suggesting a possible mechanism at the level of chromatin structure.  相似文献   

17.
18.
We identify and describe the properties of an enhancer within the chicken alpha-globin gene cluster. This cluster consists of one gene (pi) expressed only in primitive erythrocytes and two (alpha A and alpha D) expressed in both primitive and definitive cell lineages. The genes are linked together in the order 5'-pi-alpha D-alpha A-3' and occupy a region about 10 kilobase pairs long. The enhancer is located at the 3' end of the cluster, about 750 base pairs 3' to the alpha A translation stop site. When assayed by transfection into either primitive or definitive primary chicken erythrocytes, this element stimulated expression from plasmids containing the alpha D- or alpha A-globulin gene promoters. Except for sites in the alpha-globin promoters, no other stimulatory activity was observed in DNA taken from other regions of the alpha-globin locus. Moderate resolution DNase I hypersensitivity studies as well as DNase I footprinting revealed three regions of protein binding, each containing a similar core DNA sequence within the enhancer element. Gel mobility shift studies demonstrated that all three regions bind the recently identified erythrocyte-specific factor, EryfI, which has binding sites in the regulatory regions of all chicken globin genes. Our data suggest that the enhancer we have identified may act in vivo only on the alpha A gene; expression of the alpha D gene is affected by another EryfI site located in the alpha D promoter. Such a mechanism would be consistent with the observed relative abundances of alpha A- and alpha D-globin in vivo. The simplicity of these regulatory elements may reflect the limited repertoire of expression of these genes during development.  相似文献   

19.
20.
The HS-40 enhancer is the major cis-acting regulatory element responsible for the developmental stage- and erythroid lineage-specific expression of the human alpha-like globin genes, the embryonic zeta and the adult alpha2/alpha/1. A model has been proposed in which competitive factor binding at one of the HS-40 motifs, 3'-NA, modulates the capability of HS-40 to activate the embryonic zeta-globin promoter. Furthermore, this modulation was thought to be mediated through configurational changes of the HS-40 enhanceosome during development. In this study, we have further investigated the molecular basis of this model. First, human erythroid K562 cells stably integrated with various HS-40 mutants cis linked to a human alpha-globin promoter-growth hormone hybrid gene were analyzed by genomic footprinting and expression analysis. By the assay, we demonstrate that factors bound at different motifs of HS-40 indeed act in concert to build a fully functional enhanceosome. Thus, modification of factor binding at a single motif could drastically change the configuration and function of the HS-40 enhanceosome. Second, a specific 1-bp, GC-->TA mutation in the 3'-NA motif of HS-40, 3'-NA(II), has been shown previously to cause significant derepression of the embryonic zeta-globin promoter activity in erythroid cells. This derepression was hypothesized to be regulated through competitive binding of different nuclear factors, in particular AP1 and NF-E2, to the 3'-NA motif. By gel mobility shift and transient cotransfection assays, we now show that 3'-NA(II) mutation completely abolishes the binding of small MafK homodimer. Surprisingly, NF-E2 as well as AP1 can still bind to the 3'-NA(II) sequence. The association constants of both NF-E2 and AP1 are similar to their interactions with the wild-type 3'-NA motif. However, the 3'-NA(II) mutation causes an approximately twofold reduction of the binding affinity of NF-E2 factor to the 3'-NA motif. This reduction of affinity could be accounted for by a twofold-higher rate of dissociation of the NF-E2-3'-NA(II) complex. Finally, we show by chromatin immunoprecipitation experiments that only binding of NF-E2, not AP1, could be detected in vivo in K562 cells around the HS-40 region. These data exclude a role for AP1 in the developmental regulation of the human alpha-globin locus via the 3'-NA motif of HS-40 in embryonic/fetal erythroid cells. Furthermore, extrapolation of the in vitro binding studies suggests that factors other than NF-E2, such as the small Maf homodimers, are likely involved in the regulation of the HS-40 function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号