首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fertilization stimulates lipid peroxidation in the sea urchin egg   总被引:4,自引:0,他引:4  
Arachidonic acid is rapidly taken-up by Strongylocentrotus purpuratus eggs and eventually incorporated into cellular lipids. During the first few minutes following fertilization the arachidonic acid that has not been incorporated into other lipid forms is oxidized to a hydroxy-fatty acid. In vivo, the time of arachidonic acid conversion coincides with the transient period of increased intracellular free calcium after fertilization. In vitro, this lipid peroxidizing activity has been shown to be initiated by micromolar calcium. Taken together with the presence of Ca2+-stimulated lipase, these results suggest that calcium regulates both the release of polyunsaturated fatty acids from cellular lipids and their subsequent oxidation. The physiological function of lipid hydroxides or hydroperoxides in sea urchin fertilization is unknown. A possibility is that they may be important in regulating the many membrane permeability changes occurring within minutes after fertilization.  相似文献   

2.
1. Addition of arachidonic acid (AA) to Ascidia ceratodes oocyte homogenates results in its rapid oxidation to several polar products. 2. AA oxidation in homogenates has both calcium independent and calcium stimulated components. 3. Calcium or AA addition to an oocyte homogenate stimulates O2-consumption. 4. Stimulation of homogenate O2-consumption by AA and calcium is additive. 5. Intact eggs oxidize AA to products similar to those detected in vitro. 6. Quantitatively total AA oxidation was similar for unfertilized and fertilizing eggs and dividing embryos, while qualitative differences were detected for the three stages. 7. These results demonstrate the presence of lipoxygenase-like, peroxidizing activity, in Ascidia eggs that is capable of producing products potentially important to the control of early metabolic events during development.  相似文献   

3.
Lipid Peroxides in the Free Radical Pathophysiology of Brain Diseases   总被引:10,自引:0,他引:10  
1. Polyunsaturated fatty acids are essential for normal neural cell membrane functioning because many membrane properties, such as fluidity and permeability, are closely related to the presence of unsaturated and polyunsaturated side chains. Lipid peroxidation results in loss of membrane polyunsaturated fatty acids and oxidized phospholipids as polar species contributing to increased membrane rigidity.2. Polyunsaturated fatty acids are released from membrane phospholipids by a number of enzymic mechanisms involving the receptor-mediated stimulation of phospholipase A2 and phospholipase C/diacylglycerol lipase pathways.3. The overstimulation of excitatory amino acid (EAA) receptors stimulates the activities of lipases and phospholipases, and this stimulation produces changes in membrane phospholipid composition, permeability, and fluidity, thus decreasing the integrity of plasma membranes.4. Alterations in properties of plasma membranes may be responsible for the degeneration of neurons seen in neurodegenerative diseases. Two major processes may be involved in neuronal injury caused by the overstimulation of EAA receptors. One is a large Ca2+ influx and the other is an accumulation of free radicals and lipid peroxides as a result of neural membrane phospholipid degradation. It is suggested that calcium and free radicals act in concert to induce neuronal injury in acute trauma (ischemia and spinal cord injury) and in neurodegenerative diseases.  相似文献   

4.
Liver mitochondria treated with N-ethylmaleimide can accumulate Ca2+ but cannot retain it. Ca2+ loss following uptake occurs in parallel with a proton uptake and collapse of the membrane potential. Respiration is not activated during Ca2+ release and cannot be stimulated by uncoupler. After Ca2+ release and accompanying phenomena are nearly complete, the mitochondria undergo a large amplitude swelling. Nupercaine inhibits the premature release of Ca2+, proton uptake, decline in membrane potential, inhibition of uncoupler-stimulated respiration, and large amplitude swelling. Ruthenium red also prevents these effects. Neither Sr2+ or Mn2+ will substitute for Ca2+ to induce these effects in N-ethylmaleimide-treated mitochondria. The effects of N-ethylmaleimide plus Ca2+ on mitochondria are not accompanied by a significant alteration in the content or composition of phospholipids but are accompanied by small increases in the mitochondrial content of free fatty acids. Free fatty acids accumulate more rapidly in response to limited Ca2+ loading in the absence of N-ethylmaleimide than they do in its presence. In the absence of N-ethylmaleimide, polyunsaturated fatty acids and saturated plus monounsaturated fatty acids accumulate at nearly equal rates. In the presence of N-ethylmaleimide, polyunsaturated fatty acids accumulate more rapidly than saturated plus monounsaturated fatty acids. Any condition or agent tested which inhibited swelling and the other effects produced by Ca2+ plus N-ethylmaleimide also prevented the more rapid accumulation of polyunsaturated, compared to saturated plus monounsaturated, fatty acids. In the light of a positional analysis of phospholipid acyl moieties, these data suggest that 1-acyllysophospholipids accumulate in swelling mitochondria but not in response to noraml Ca2+ loading or when swelling is blocked by other agents. The free fatty acid accumulation, per se, is not responsible for swelling, but levels of exogenous palmitic acid as low as 1 nmol/mg of protein dramatically alter the dependence of swelling velocity on Ca2+ concentration, producing a shift from a sigmoidal- to a hyperbolic-like relationship. This same alteration is brought about by aging the mitochondrial preparation at 0 degrees C. Either pyruvate or DL-carnitine prevents the effect of exogenous palmitate and restores the Aa2+ swelling dependence of aged N-ethylmaleimide-treated mitochondria to that of fresh N-ethylmaleimide-treated mitochondria. Intramitochondrial acylcoenzyme A or acylcarnitine, or both, therefore, to be the modulator of Ca2+ sensitivity rather than free fatty acid. The findings are discussed in terms of the role of intramitochondrial phospholipase and other phospholipid metabolizing enzymes in the mechanisms of N-ethylmaleimide plus Ca2+ effects on mitochondria.  相似文献   

5.
Recently, we have measured in erythrocytes a voltage-modulated and dihydropyridine-inhibited calcium influx. Since arachidonic acid and other polyunsaturated fatty acids influence the activities of most ion channels, we studied their effects on the erythrocyte Ca(2+) influx. It was measured on fresh erythrocytes, isolated from healthy donors, using the fluorescent dye Fura 2 as indicator of [Ca(2+)](i). AA (5-50 microM) and EPA (20-30 microM) stimulated a concentration-dependent increase in [Ca(2+)](i), deriving from extracellular calcium (1 mM), without affecting the intra- and extracellular pH and membrane voltage. The Ca(2+) influx rate varied from 0.5 to 3 nM Ca(2+)/s in the presence of AA and from 0.9 to 1.7 nM Ca(2+)/s with EPA. The Ca(2+) influx elicited by AA and EPA was not inhibited by dihydropyridines, while cyclooxygenase inhibitors were effective and PGE1 or PGE2 did not produce any effect. We conclude that AA could activate an erythrocyte voltage-independent Ca(2+) transport via an intermediate product of cyclooxygenase pathway; however, a direct interaction with the membrane lipid-protein cannot be excluded.  相似文献   

6.
J A Litwan 《Histochemistry》1977,53(4):301-315
A method histochemical localization of prostaglandin synthetase using DAB, potassium cyanide and polyunsaturated fatty acid has been revised. The arachidonic acid-induced DAB oxidation observed in the secretory epithelium of sheep vesicular glands and in collecting tubules as well as intersititial cells of rabbit kidney medulla was found to be insensitive to antiinflammatory cyclooxygenase (formerly referred as prostaglandin synthetase) inhibitors, such as indomethacin, aspirin, mefenamic acid and paracetamol, whereas aminotriazole caused complete inhibition of the reaction. Furthermore, DAB was oxidized in the presence of polyunsaturated fatty acids inconvertible to prostaglandins (linoleic and linolenic acid) as well as in the presence of H2O2--in the latter case reaction possessed identical features with that induced by fatty acids. Ultrastructurally, the reaction product was localized on the membranes of nuclear envelope and endoplasmic reticulum. On the ground of the results obtained a hypothesis is presented, that the polyunsaturated fatty acid-induced DAB oxidation is due to a peroxidatic activity of the investigated tissues. Possible relations between such peroxidatic activity and prostaglandin biosynthesis are discussed.  相似文献   

7.
G protein regulation of human platelet membrane phospholipase A2 activity was investigated at pH 8.0 and 9.0 by studying the effects of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), and of F-/Al3+ ions on arachidonic acid (AA) release. The membrane acted as the source of the enzyme, the substrate, and the G protein. At pH 8.0, 10 and 100 microM GTP gamma S stimulated AA mobilization at least 6-fold. Optimum AA release conditions required 1 mM Ca2+ and 5 mM Mg2+. Nonspecific nucleotide effect was excluded since similar stimulatory effects on AA release were not observed by ATP, GTP, ADP, and NADP. Although at pH 9.0 the GTP gamma S-stimulated AA release was greater than at pH 8.0, it constituted only 26% of the total. At both pH values the effect of F- (10 mM) in the presence of Al3+ (2 microM) was similar to that of GTP gamma S. The G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), inhibited the GTP gamma S-stimulated AA release by about 80% at pH 8.0 and by 100% at pH 9.0. To determine a possible contribution to AA mobilization by the phospholipase C and diacylglycerol lipase pathway, the effects of neomycin, a phospholipase C inhibitor, were investigated. 100 microM neomycin did not inhibit the GTP gamma S-stimulated AA release at pH 8.0 and only slightly so (17%) at pH 9.0. At pH 8.0 in the presence of Ca2+ the released fatty acids consisted mainly of arachidonic and docosahexaenoic acids (80 and 8%, respectively). GTP gamma S had no effect on the fatty acid profile but only on their quantity. These results provide evidence of G protein regulation of phospholipase A2 activity in isolated platelet membranes.  相似文献   

8.
Calcium-tolerant cardiac myocytes were isolated from adult rat ventricles and sarcolemmal glucose transport was assessed by measuring linear initial uptake rates of the nonmetabolized glucose analog 3-O-methyl-D-glucose in the presence and absence of Ca2+ in the incubation medium. (1) Agents which are known to increase internal Na+ and thus stimulate Ca2+ influx via Na+-Ca2+ exchange stimulated 3-methylglucose transport in the presence of external Ca2+. These include low-Na+ medium, 10(-6) M ouabain and K+-free medium, cyanide and the sodium ionophore, monensin. Hyperosmolarity stimulated transport also in the absence of Ca2+, consistent with release of Ca2+ from internal stores. Transport was decreased in a hypo-osmolar medium and with 10(-9) M ouabain, a concentration which stimulates the Na+ pump. (2) The calcium ionophore A23187 increased basal 3-methylglucose transport but opposed stimulation of transport by insulin. (3) Insulin-stimulated transport was antagonized by palmitate and this effect was reversed by 2-bromostearate, an inhibitor of fatty acid oxidation. These results are identical in all respects to those obtained in intact cardiac and skeletal muscle preparations, confirming that hexose transport in muscle shows Ca2+ dependence and indicating that isolated cardiac myocytes are suitable for the study of this phenomenon.  相似文献   

9.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

10.
Acute inflammation is a common feature of many life-threatening pathologies, including septic shock. One hallmark of acute inflammation is the peroxidation of polyunsaturated fatty acids forming bioactive products that regulate inflammation. Myeloperoxidase (MPO) is an abundant phagocyte-derived hemoprotein released during phagocyte activation. Here, we investigated the role of MPO in modulating biologically active arachidonic acid (AA) and linoleic acid (LA) metabolites during acute inflammation. Wild-type and MPO-knockout (KO) mice were exposed to intraperitoneally injected endotoxin for 24 h, and plasma LA and AA oxidation products were comprehensively analyzed using a liquid chromatography–mass spectrometry method. Compared to wild-type mice, MPO-KO mice had significantly lower plasma levels of LA epoxides and corresponding LA- and AA-derived fatty acid diols. AA and LA hydroxy intermediates (hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids) were also significantly lower in MPO-KO mice. Conversely, MPO-deficient mice had significantly higher plasma levels of cysteinyl-leukotrienes with well-known proinflammatory properties. In vitro experiments revealed significantly lower amounts of AA and LA epoxides, LA- and AA-derived fatty acid diols, and AA and LA hydroxy intermediates in stimulated polymorphonuclear neutrophils isolated from MPO-KO mice. Our results demonstrate that MPO modulates the balance of pro- and anti-inflammatory lipid mediators during acute inflammation and, in this way, may control acute inflammatory diseases.  相似文献   

11.
This is the first report to show that pancreatic islet cells generate H2O2 and this H2O2 generation is regulated synergistically by cytoplasmic free calcium ([Ca2+]i) and protein kinase-C. Effects of calcium ionophore A23187 and 12-O-tetradecanoylphorbol 13-acetate (TPA), a tumor promoter, on H2O2 generation were studied in whole pancreatic islets obtained from male Wistar rats. We employed A23187 to elevate cytoplasmic free calcium, and TPA to activate protein kinase-C and monitored continuously their effects on H2O2 generation, measured using homovanillic acid and horseradish peroxidase. A23187 stimulates H2O2 generation. TPA, which activates protein kinase-C, augments this A23187-stimulated H2O2 generation. H2O2 generation is stimulated by an increase in [Ca2+]i and regulated synergistically by [Ca2+]i and protein kinase-C.  相似文献   

12.
Pathological conditions in the brain, such as ischemia, trauma and seizure are accompanied by increased levels of free n-6 and n-3 polyunsaturated fatty acids (PUFA), mainly arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3). A neuroprotective role has been suggested for PUFA. For investigation of the potential molecular mechanisms involved in neuroprotection by PUFA, we studied the regulation of the concentration of intracellular Ca2+ ([Ca2+]i) in rat brain astrocytes. We evaluated the presence of extracellular PUFA and the release of intracellular PUFA. Interestingly, only the constitutive brain PUFA AA and DHA, but not eicosapentaenoic acid (EPA) had prominent effects on intracellular Ca2+. AA and DHA suppressed [Ca2+]i oscillation, inhibited store-operated Ca2+ entry, and reduced the amplitudes of Ca2+ responses evoked by agonists of G protein-coupled receptors. Moreover, prolonged exposure of astrocytes to AA and DHA brought the cells to a new steady state of a moderately elevated [Ca2+]i level, where the cells became virtually insensitive to external stimuli. This new steady state can be considered as a mechanism of self-protection. It isolates disturbed parts of the brain, because AA and DHA reduce pathological overstimulation in the tissue surrounding the damaged area. In inflammation-related events, frequently AA and DHA exhibit opposite effects. However, in astrocytes AA and DHA exerted comparable effects on [Ca2+]i. Extracellularly added AA and DHA, but not EPA, were also able to induce the release of [3H]AA from prelabeled astrocytes. Therefore, we also suggest the involvement of phospholipase A2 activation and lysophospholipid generation in the regulation of intracellular Ca2+ in astrocytes.  相似文献   

13.
Mechanism of alloxan-induced calcium release from rat liver mitochondria   总被引:9,自引:0,他引:9  
The objective of the present work was to investigate the mechanism of alloxan-induced Ca2+ release from rat liver mitochondria. Transport of Ca2+, oxidation and hydrolysis of mitochondrial pyridine nucleotides, changes in the mitochondrial membrane potential, and oxygen consumption by mitochondria were investigated. Alloxan does not inhibit the uptake of Ca2+ but stimulates the release of Ca2+ from liver mitochondria, which is accompanied by oxidation and hydrolysis of pyridine nucleotides. Oxidation of mitochondrial pyridine nucleotides by alloxan is not mediated by glutathione peroxidase and glutathione reductase and may occur largely nonenzymatically. Measurements of the mitochondrial membrane potential in combination with inhibitors of Ca2+ reuptake indicate that Ca2+ release takes place from intact liver mitochondria via a distinct pathway. Limited redox cycling of alloxan by mitochondria is indicated by measurements of the membrane potential and O2 consumption in the presence of cyanide. It is concluded that alloxan can cause Ca2+ release from intact rat liver mitochondria. Redox cycling of alloxan is not significantly involved in the Ca2+ release mechanism. Oxidation and hydrolysis of pyridine nucleotides, possibly in conjunction with oxidation of critical sulfhydryl groups, seem to be key events in the alloxan-induced Ca2+ release. Disturbance of cellular Ca2+ homeostasis may partly explain alloxan toxicity.  相似文献   

14.
Arachidonic (AA) and docosahexaenoic acid (DHA) are the major polyunsaturated fatty acids (PUFAs) in the brain. However, their influence on intracellular Ca2+ signalling is still widely unknown. In astrocytes, the amplitude of thrombin- induced Ca2+ response was time-dependently diminished by AA and DHA, or by the AA tetraynoic analogue ETYA, but not by eicosapentaenoic acid (EPA). Thrombin-elicited Ca2+ response was reduced (20-30%) by 1-min exposure to AA or DHA. Additionally, 1-min application of AA or DHA together with thrombin in Ca2+-free medium blocked Ca2+ influx, which followed after readdition of extracellular Ca2+. EPA and ETYA, however, were ineffective. Long-term treatment of astrocytes with AA and DHA, but not EPA reduced the amplitude of the thrombin-induced Ca2+ response by up to 80%. AA and DHA caused a comparable decrease in intracellular Ca2+ store content. Only DHA and AA, but not EPA or ETYA, caused liberation of endogenous AA by cytosolic phospholipase A2 (cPLA2). Therefore, we reasoned that the suppression of Ca2+ response to thrombin by AA and DHA could be due to release of endogenous AA. Possible participation of AA metabolites, however, was excluded by the finding that specific inhibitors of the different oxidative metabolic pathways of AA were not able to abrogate the inhibitory AA effect. In addition, thrombin evoked AA release via activation of cPLA2. From our data we propose a novel model of positive/negative-feed-back in which agonist-induced release of AA from membrane phospholipids promotes further AA release and then suppresses agonist-induced Ca2+ responses.  相似文献   

15.
S Uribe  P Rangel  J P Pardo 《Cell calcium》1992,13(4):211-217
The interactions of Ca2+ with mitochondria from Saccharomyces cerevisiae were explored. Mitochondria were loaded with the metallochromic dye Fluo-3 to measure the concentration of free calcium in the matrix. Addition of EGTA or Ca2+ led to fluctuations in mitochondrial free calcium between 120 and 400 nM. Ca2+ variations were slower at 4 degrees C than at 25 degrees C or in the presence of phosphate instead of acetate. The net uptake of 45Ca2+ was higher with phosphate than with acetate. The optimum pH for Ca2+ uptake was 6.8. Ruthenium red did not affect the uptake of Ca2+. Addition of antimycin-A or uncouplers led to a small and transient release of Ca2+. Addition of EGTA or the monovalent cations Na+ or K+ resulted in higher release of Ca2+. Site I but not site II dependent O2 consumption was partially inhibited by EGTA. The effect of Ca2+ on NADH oxidation is similar to results reported with enzymes from mammalian sources which use NADH, such as the pyruvate, isocitrate and oxoglutarate dehydrogenases.  相似文献   

16.
T Kambe  M Murakami  I Kudo 《FEBS letters》1999,453(1-2):81-84
By analyzing human embryonic kidney 293 cell transfectants stably overexpressing various types of phospholipase A2 (PLA2), we have shown that polyunsaturated fatty acids (PUFAs) preferentially activate type IIA secretory PLA2 (sPLA2-IIA)-mediated arachidonic acid (AA) release from interleukin-1 (IL-1)-stimulated cells. When 293 cells prelabeled with 13H]AA were incubated with exogenous PUFAs in the presence of IL-1 and serum, there was a significant increase in [3H]AA release (in the order AA > linoleic acid > oleic acid), which was augmented markedly by sPLA2-IIA and modestly by type IV cytosolic PLA2 (cPLA2), but only minimally by type VI Ca2(+)-independent PLA2, overexpression. Transfection of cPLA2 into sPLA2-IIA-expressing cells produced a synergistic increase in IL-1-dependent [3H]AA release and subsequent prostaglandin production. Our results support the proposal that prior production of AA by cPLA2 in cytokine-stimulated cells destabilizes the cellular membranes, thereby rendering them more susceptible to subsequent hydrolysis by sPLA2-IIA.  相似文献   

17.
Angiotensin II (ANG II) promotes vascular smooth muscle cell (VSMC) growth, stimulates Ca(2+)-calmodulin (CaM)-dependent kinase II (CaMKII), and activates cytosolic Ca(2+)-dependent phospholipase A2 (cPLA2), which releases arachidonic acid (AA). ANG II also generates H2O2 and activates Akt, which have been implicated in ANG II actions in VSMC. This study was conducted to investigate the relationship of these signaling molecules to Akt activation in rat aortic VSMC. ANG II increased Akt activity, as measured by its phosphorylation at serine-473. ANG II (200 nM)-induced Akt phosphorylation was decreased by extracellular Ca2+ depletion and calcium chelator EGTA and inhibitors of CaM [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and CaMKII [(2-[N-(2-hydroxyethyl)]-N-(4-me-thoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine)]. cPLA2 inhibitor pyrrolidine-1, antisense oligonucleotide, and retroviral small interfering RNA also attenuated ANG II-induced Akt phosphorylation. AA increased Akt phosphorylation, and AA metabolism inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) blocked ANG II- and AA-induced Akt phosphorylation (199.03 +/- 27.91% with ANG II and 110.18 +/- 22.40% with ETYA + ANG II; 405.00 +/- 86.22% with AA and 153.97 +/- 63.26% with ETYA + AA). Inhibitors of lipoxygenase (cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate) and cytochrome P-450 (ketoconazole and 17-octadecynoic acid), but not cyclooxygenase (indomethacin), attenuated ANG II- and AA-induced Akt phosphorylation. Furthermore, 5(S)-, 12(S)-, 15(S)-, and 20-hydroxyeicosatetraenoic acids and 5,6-, 11,12-, and 14,15-epoxyeicosatrienoic acids increased Akt phosphorylation. Catalase inhibited ANG II-increased H2O2 production but not Akt phosphorylation. Oleic acid, which also increased H2O2 production, did not cause Akt phosphorylation. These data suggest that ANG II-induced Akt activation in VSMC is mediated by AA metabolites, most likely generated via lipoxygenase and cytochrome P-450 consequent to AA released by CaMKII-activated cPLA2 and independent of H2O2 production.  相似文献   

18.
Brain cells in situ contain low concentrations of free polyunsaturated fatty acids such as arachidonic acid (AA) that are released following pathological insults. As a large rise in extracellular [K(+)] accompanies cerebral ischemia, we explored whether this was a stimulus for cellular AA release employing a murine mixed cortical cell culture preparation radiolabeled with AA. Elevating the [K(+)](o) from 5 to 52 mm induced a time-dependent increase in [(3)H]AA release, which reached a plateau after 15 min. Removal of [Ca(2+)](o) or addition of CdCl(2) (100 microm) diminished the net high K(+)-induced AA release, as did treatment of the cultures with tetanus toxin (300 ng/ml) to block endogenous neurotransmitter release. Pharmacological antagonism of both ionotropic and metabotropic glutamate receptors completely prevented high K(+)-evoked AA release, indicating that glutamate was the neurotransmitter in question. Addition of exogenous glutamate mimicked precisely the characteristics of AA release that followed increases in [K(+)](o). Finally, glutamate and AA were released solely from neurons as tetanus toxin did not cleave astrocytic synaptobrevin-2, nor was AA released from pure astrocyte cultures using the same stimuli that were effective in mixed cultures. Taken in toto, our data are consistent with the following scenario: high [K(+)](o) depolarizes neurons, causing an influx of Ca(2+) via voltage-gated Ca(2+) channels. This Ca(2+) influx stimulates the release of glutamate into the synaptic cleft, where it activates postsynaptic glutamate receptors. Events likely converge on the activation of a phospholipase A(2) family member and possibly the enzymes diacylglycerol and monoacylglycerol lipases to yield free AA.  相似文献   

19.
During anoxic incubation, depletion of mitochondrial ATP was followed by release of Ca2+ with concomitant increase in the rate of state 4 respiration due to disruption of the diffusion barrier against protons. The external addition of ATP and its non-metabolizable analog, beta,gamma-methylene adenosine 5'-triphosphate, prevented both the release of Ca2+ and increase in the rate of state 4 respiration. Addition of EGTA, which did not prevent release of the ion, resulted in little increase in the respiration rate. Addition of an inhibitor of mitochondrial phospholipase A2, such as quinacrine, dibucaine, or chlorpromazine, also prevented increase in the respiration rate without affecting Ca2+ release from mitochondria during anoxic incubation. Non-esterified polyunsaturated fatty acids were also found to be liberated from anoxic mitochondria. External addition of the ATP-analog, EGTA, and inhibitors of phospholipase A2 suppressed the liberation of non-esterified polyunsaturated fatty acids. Melittin and Ca2+, which activate phospholipase A2, increased the rate of state 4 respiration and the liberation of fatty acids. These findings support the hypothesis proposed previously that the following sequence changes occurs in mitochondria during anoxia; depletion of ATP, liberation of free calcium from mitochondria, and disruption of the diffusion barrier against H+ of the inner membrane. The results also indicate another event; activation of phospholipase A2 by release Ca2+ which results in H+ leakiness of the inner membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号