首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
F Barany  J Zebala 《Gene》1992,112(1):13-20
A two-codon insertion mutagenesis method has been generalized. Over two dozen insertion mutants throughout the gene encoding TaqI restriction endonuclease were constructed and activity was characterized. All mutants with activity either cleaved or nicked the canonical T decreases CGA recognition sequence. Some insertion mutants created duplication of gene regions, termed Gemini proteins, which still retained activity. The correlation between mutants with poor activity and the regions of shared amino acid identity between the isoschizomeric TaqI and TthHB8I suggests these regions are involved in DNA recognition and/or catalysis.  相似文献   

2.
The production and high level secretion of TaqI restriction endonuclease using bacterial secretion signal within the malE gene was achieved by cloning the PCR-amplified gene from Thermus aquaticus into E. coli. The maltose binding protein (MBP) part of the MBP-TaqI fusion protein expressed by this construct did not interfere with the biological activity of the TaqI restriction endonuclease. E. coli XL1 carrying pH185 produced 332 U ml–1 TaqI endonuclease 81% of which was secreted into the medium without apparent cell lysis. Optimization of culture conditions and selection of the host strain were found to be important for the efficient extracellular production of this protein.  相似文献   

3.
F Barany 《Gene》1988,65(2):167-177
Under phoA promoter control, TaqI endonuclease was overproduced to 5% of Escherichia coli cellular proteins. This was achieved by fusing the endonuclease gene to the first four codons of the alkaline phosphatase signal sequence. For maximal overproduction (30% of cellular proteins), a putative 14-bp hairpin within the endonuclease coding sequence was replaced with degenerate codons. In addition, TaqI methylase was required to protect host DNA. The endonuclease was purified in sufficient amounts for crystallization.  相似文献   

4.
Escherichia coli possesses two DNA glycosylase/apurinic lyase activities with overlapping substrate specificities, endonuclease III and endonuclease VIII, that recognize and remove oxidized pyrimidines from DNA. Endonuclease III is encoded by the nth gene. Endonuclease VIII has now been purified to apparent homogeneity, and the gene, nei, has been cloned by using reverse genetics. The gene nei is located at 16 min on the E. coli chromosome and encodes a 263-amino-acid protein which shows significant homology in the N-terminal and C-terminal regions to five bacterial Fpg proteins. A nei partial deletion replacement mutant was constructed, and deletion of nei was confirmed by genomic PCR, activity analysis, and Western blot analysis. nth nei double mutants were hypersensitive to ionizing radiation and hydrogen peroxide but not as sensitive as mutants devoid of base excision repair (xth nfo). Single nth mutants exhibited wild-type sensitivity to X rays, while nei mutants were consistently slightly more sensitive than the wild type. Double mutants lacking both endonucleases III and VIII exhibited a strong spontaneous mutator phenotype (about 20-fold) as determined by a rifampin forward mutation assay. In contrast to nth mutants, which showed a weak mutator phenotype, nei single mutants behaved as the wild type.  相似文献   

5.
The nucleotide sequence of the genes encoding methyltransferase TaqI (M.TaqI) and restriction endonuclease TaqI (R.TaqI) with the recognition sequence, TCGA, were analyzed in clones isolated from independent libraries. The genes, originally reported as 363 and 236 codons long [Slatko et al., Nucleic Acids Res. 15 (1987) 9781-9796] were redetermined as 421 and 263 codons long, respectively. The C terminus of the taqIM gene overlaps the N terminus of the taqIR gene by 13 codons, as observed with the isoschizomeric TthHB8I restriction-modification system [Barany et al., Gene 112 (1992) 13-20]. Removal of the overlapping codons did not interfere with in vivo M.TaqI activity. We postulate the overlap plays a role in regulating taqIR expression.  相似文献   

6.
TaqI is a metal-dependent endonuclease that recognizes T(downward arrow)CGA, with the arrow indicating the cleavage site. Mutations at K158 render the enzyme inactive and mutations at K157 significantly reduce DNA cleavage activity (W. Cao and F. Barany (1998) J. Biol. Chem. 273, 33002-33010). Aspartate, glutamate, and histidine substitutions were made at K158 in the wild-type and K157S mutant TaqI endonuclease to understand the functional organization of the active site. None of the mutants was active with Mg(2+), but the DNA cleavage activities were partly rescued by Mn2+ for K157S-K158E and K157S-K158H mutants. The rescuing effects were observed with Mn2+ but not with other divalent cations. K157S-K158E required higher Mn2+ concentrations than the wild-type enzyme for DNA cleavage activity, suggesting that a Mn2+ ion is weakly bound at the 158 position. The need to neutralize K157 to recover the catalytic activity of K158E and K158H indicates that K158 and K157 may interact functionally. In analogy with EcoRV, Ca2+ stimulated Mn2+-mediated cleavage for the wild-type TaqI, suggesting the existence of at least two metal ions at the catalytic center. A catalytic mechanism involving two metal ions and the K157-K158 pair is proposed for TaqI endonuclease.  相似文献   

7.
Three different expression systems were constructed for the high-level production of TaqI restriction endonuclease in recombinant Escherichia colicells. In system [R], the TaqI endonuclease gene was cloned and expressed under the control of the strong T7 RNA polymerase promoter. To protect cellular DNA, methylase protection was provided by constitutive co-expression of TaqI methylase activity either by cloning the TaqI methylase gene on a second plasmid (system [R,M]) or by constructing a recombinant plasmid harboring both the endonuclease and methylase genes (system [R+M]). In batch shake flasks containing complex media, co-expression of the methylase gene in systems [R,M] and [R+M] resulted in a 2- and 3-fold increase in volumetric productivity over system [R], yielding activities of 250x10(6) U l(-1) and 350x10(6) U l(-1), which were 28 and 39 times higher than the data in the literature, respectively. Under controlled bioreactor conditions in chemically defined medium, co-expression of methylase activity greatly improved the yield and specific TaqI endonuclease productivity of the recombinant cells, and reduced acetic acid excretion levels. System [R,M] is preferable for high expression levels at longer operation periods, while system [R+M] is well-suited for high expression levels in short-term bioreactor operation.  相似文献   

8.
Infection of Escherichia coli with bacteriophage T7 results in the formation of an endonuclease which is selectively associated with the T7 DNA-membrane complex. A specificity of association with the complex is indicated by the finding that the enzyme is completely resolved from a previously described T7 endonuclease I. When membrane complexes containing (3)H-labeled in vivo synthesized DNA are incubated in the standard reaction mixture a specific cleavage product is formed which is about one-fourth the size of T7 DNA. The endonuclease associated with the complex produces a similar cleavage product after extensive incubation with native T7 DNA or T7 concatemers. Degradation of concatemers occurs by a mechanism in which the DNA is converted to molecules one-half the size of T7. This product is in turn converted to fragments one-fourth the size of mature phage DNA. The endonuclease is not present in membrane complexes from uninfected cells or cells infected with gene 1 mutants. The enzyme activity is, however, present in cells infected with mutants defective in T7 DNA synthesis or maturation.  相似文献   

9.
The genetic requirements for the excision repair of thymine glycols, urea residues, and apurinic (AP) sites were examined by measuring the survival in Escherichia coli mutants of phi X174 replicative form (RF) I transfecting DNA containing selectively introduced lesions. phi X RF I DNA containing thymine glycols was inactivated at a greater rate in mutants deficient in endonuclease III (nth) than in wild-type hosts, suggesting that endonuclease III is involved in the repair of thymine glycols in vivo. phi X RF I DNA containing thymine glycols was also inactivated at a greater rate in mutants that were deficient in both exonuclease III and endonuclease IV (xth nfo) than in wild-type hosts, suggesting that a class II AP endonuclease is required for the in vivo processing of thymine glycols. phi X duplex-transfecting DNA containing urea residues or AP sites was inactivated at a greater rate in xth nfo double mutants than in wild-type, but not single-mutant, hosts, suggesting that exonuclease III or endonuclease IV is required for the repair of these damages and that either activity can substitute for the other. These data are in agreement with the known in vitro substrate specificities of endonuclease III, exonuclease III, and endonuclease IV.  相似文献   

10.
Bacteriophage T4 mutants defective in gene 56 (dCTPase) synthesize DNA where cytosine (Cyt) partially or completely replaces hydroxymethylcytosine (HmCyt). This Cyt-DNA is degraded in vivo by T4 endonucleases II and IV, and by the exonuclease coded or controlled by genes 46 and 47.-Our results demonstrate that T4 endonuclease II is the principal enzyme initiating degradation of T4 Cyt-DNA. The activity of endonuclease IV, but not that of endonuclease II, was stimulated in the presence of a wild-type dCMP hydroxymethylase, also when no HmCyt was incorporated into phage DNA, suggesting the possibility of direct endonuclease IV-dCMP hydroxymethylase interactions. Endonuclease II activity, on the other hand, was almost completely inhibited in the presence of very small amounts of HmCyt (3-9% of total Cyt + HmCyt) in the DNA. Possible mechanisms for this inhibition are discussed.-The E. coli RNA polymerase modified by the products of T4 genes 33 and 55 was capable of initiating DNA synthesis on a Cyt-DNA template, although it probably cannot do so on an HmCyt template. In the presence of an active endonuclease IV, Cyt-DNA synthesis was arrested 10-30 min after infection, probably due to damage to the template. Cyt-DNA synthesis dependent on the unmodified (33-55-) RNA polymerase was less sensitive to endonuclease IV action.  相似文献   

11.
The first group I intron in the cox1 gene (cox1I1b ) of the mitochondrial genome of the fission yeast Schizosaccharomyces pombe is a mobile DNA element. The mobility is dependent on an endonuclease protein that is encoded by an intronic open reading frame (ORF). The intron-encoded endonuclease is a typical member of the LAGLIDADG protein family of endonucleases with two consensus motifs. In addition to this, analysis of several intron mutants revealed that this protein is required for intron splicing. However, this protein is one of the few group I intron-encoded proteins that functions in RNA splicing simultaneously with its DNA endonuclease activity. We report here on the biochemical characterization of the endonuclease activity of this protein artificially expressed in Escherichia coli. Although the intronic ORF is expressed as a fusion protein with the upstream exon in vivo, the experiments showed that a truncated translation product consisting of the C-terminal 304 codons of the cox1I1b ORF restricted to loop 8 of the intron RNA secondary structure is sufficient for the specific endonuclease activity in vitro. Based on the results, we speculate on the evolution of site-specific homing endonucleases encoded by group I introns in eukaryotes.  相似文献   

12.
The gene (crc) responsible for catabolite repression control in Pseudomonas aeruginosa has been cloned and sequenced. Flanking the crc gene are genes encoding orotate phosphoribosyl transferase (pyrE) and RNase PH (rph). New crc mutants were constructed by disruption of the wild-type crc gene. The crc gene encodes an open reading frame of 259 amino acids with homology to the apurinic/apyrimidinic endonuclease family of DNA repair enzymes. However, crc mutants do not have a DNA repair phenotype, nor can the crc gene complement Escherichia coli DNA repair-deficient strains. The crc gene product was overexpressed in both P. aeruginosa and in E. coli, and the Crc protein was purified from both. The purified Crc proteins show neither apurinic/apyrimidinic endonuclease nor exonuclease activity. Antibody to the purified Crc protein reacted with proteins of similar size in crude extracts from Pseudomonas putida and Pseudomonas fluorescens, suggesting a common mechanism of catabolite repression in these three species.  相似文献   

13.
The gene which codes for endonuclease III of Escherichia coli has been sequenced. The nth gene was previously subcloned and defined as the gene which led to overproduction of endonuclease III when present on a multicopy plasmid and which created a deficiency in endonuclease III activity when mutated. The nth gene was sequenced and translated into a predicted polypeptide. The molecular weight (23,546), the amino-terminal amino acid sequence, and the amino acid composition of the polypeptide predicted from the nucleotide sequence are excellent agreement with those same properties determined for the purified protein. Thus, the nth gene is the structural gene for endonuclease III. Inspection of the nucleotide sequence reveals that there is an open reading frame immediately upstream of the nth gene, suggesting that it might be part of an operon. There is a region of dyad symmetry which could form a hairpin stem and loop structure if transcribed into RNA characteristic of a rho-dependent terminator downstream from the nth gene. The nth gene of Escherichia coli has been cloned onto a lambda PL expression vector which yields approximately 300-fold overproduction of endonuclease III. We have purified the enzyme to apparent homogeneity using two chromatographic steps. Our purification scheme allowed the preparation of 117 mg of protein from 190 g of E. coli with a 70% yield. The purified protein has both AP endonuclease activity and DNA N-glycosylase activity. The protein has a Stokes radius of 2.25 nm, a sedimentation coefficient of 2.65 S, a molecular weight of 26,300 in the native state and 27,300 in the denatured state, and a frictional ratio of 1.13.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The NusG-like protein from Thermotoga maritima was expressed in Escherichia coli and purified to homogeneity. Purified T. maritima NusG exhibited a generalized, non-sequence-specific and highly cooperative DNA and RNA binding activity. The complexes formed between nucleic acid and T. maritima NusG were unable to penetrate a polyacrylamide or agarose gel. The affinity of the protein for DNA was highest in buffers containing about 50 mM salt. The DNA-protein complexes could not be stained with ethidium bromide, were resistant to digestion by TaqI endonuclease, were able to be transcribed in vitro by T. maritima RNA polymerase, and contained a minimum of about 30 to 40 monomers of NusG per kb of duplex DNA. The protein had comparable affinities for duplex DNA and RNA but a lower affinity for single-stranded DNA. Electron microscopy showed that the DNA in the complex is condensed within a large structure that resembles the complex between DNA and histone-like protein Hcl from Chlamydia trachomatis. Neither the wild-type T. maritima nusG gene nor a deletion derivative more similar to the E. coli gene was able to substitute for the essential E. coli nusG. Two variants of the NusG protein were constructed, expressed, and purified: one contains only the entire 171-amino-acid insertion that is unique to T. maritima NusG, and the other has only the sequences present in NusG homologs from E. coli and other eubacteria. Both variants exhibited similar DNA and RNA binding behavior, although their apparent affinities were 5- to 10-fold lower than that of the wild-type T. maritima NusG.  相似文献   

15.
Exposure of Escherichia coli strains deficient in molybdopterin biosynthesis (moa) to the purine base N-6-hydroxylaminopurine (HAP) is mutagenic and toxic. We show that moa mutants exposed to HAP also exhibit elevated mutagenesis, a hyperrecombination phenotype, and increased SOS induction. The E. coli rdgB gene encodes a protein homologous to a deoxyribonucleotide triphosphate pyrophosphatase from Methanococcus jannaschii that shows a preference for purine base analogs. moa rdgB mutants are extremely sensitive to killing by HAP and exhibit increased mutagenesis, recombination, and SOS induction upon HAP exposure. Disruption of the endonuclease V gene, nfi, rescues the HAP sensitivity displayed by moa and moa rdgB mutants and reduces the level of recombination and SOS induction, but it increases the level of mutagenesis. Our results suggest that endonuclease V incision of DNA containing HAP leads to increased recombination and SOS induction and even cell death. Double-strand break repair mutants display an increase in HAP sensitivity, which can be reversed by an nfi mutation. This suggests that cell killing may result from an increase in double-strand breaks generated when replication forks encounter endonuclease V-nicked DNA. We propose a pathway for the removal of HAP from purine pools, from deoxynucleotide triphosphate pools, and from DNA, and we suggest a general model for excluding purine base analogs from DNA. The system for HAP removal consists of a molybdoenzyme, thought to detoxify HAP, a deoxyribonucleotide triphosphate pyrophosphatase that removes noncanonical deoxyribonucleotide triphosphates from replication precursor pools, and an endonuclease that initiates the removal of HAP from DNA.  相似文献   

16.
In vivo and in vitro evidence is presented implicating a function of GATC methylation in the Escherichia coli replication origin, oriC, during initiation of DNA synthesis. Transformation frequencies of oriC plasmids into E. coli dam mutants, deficient in the GATC-specific DNA methylase, are greatly reduced compared with parental dam+ cells, particularly for plasmids that must use oriC for initiation. Mutations that suppress the mismatch repair deficiency of dam mutants do not increase these low transformation frequencies, implicating a new function for the Dam methylase. oriC DNA isolated from dam- cells functions 2- to 4-fold less well in the oriC-specific in vitro initiation system when compared with oriC DNA from dam+ cells. This decreased template activity is restored 2- to 3-fold if the DNA from dam- cells is first methylated with purified Dam methylase. Bacterial origin plasmids or M13-oriC chimeric phage DNA, isolated from either base substitution or insertion dam mutants of E. coli, exhibit some sensitivity to digestion by DpnI, a restriction endonuclease specific for methylated GATC sites, showing that these dam mutants retain some Dam methylation activity. Sites of preferred cleavage are found within the oriC region, as well as in the ColE1-type origin.  相似文献   

17.
We have developed an assay that allows analysis of the activity of EcoRI restriction endonuclease (ENase) and its mutants in vivo. This assay is based on the fact that wild type (wt) EcoRI ENase is toxic for Escherichia coli cells not expressing the EcoRI methyltransferase (MTase). The viability factor defined by the ratio of the viable counts of E. coli cultures having or not having expressed the ecoRIR gene for a defined time is 10(-6) for wt EcoRI ENase and close to one for a totally inactive EcoRI ENase mutant. While the EcoRI MTase (M.EcoRI) provides substantial protection against the toxic effects of the wt EcoRI ENase and several of the mutants, some mutants become more toxic in the presence of M.EcoRI. Twenty-four different DNA-binding-site mutants of EcoRI ENase were characterized in their activity in vivo with this assay. The results obtained allow us to conclude that the structural integrity of the region at and around aa 200 seems to be very critical for the enzymatic function of EcoRI ENase: nonconservative replacements there lead to viability factors of 1-10(-2). While our results indicate that the region around aa 144 and 145 is also involved in the EcoRI ENase-catalyzed reaction, it is also evident that the effects of mutation there are not as large: viability factors of approx. 10(-3) are obtained even for drastic replacements. These results are discussed in the light of the x-ray structure analysis of an EcoRI ENase-DNA recognition complex.  相似文献   

18.
A second cellulose synthase gene (acsAII) coding for a 175-kDa polypeptide that is similar in size and sequence to the acsAB gene product has been identified in Acetobacter xylinum AY201. Evidence for the presence of this gene was obtained during analysis of A. xylinum mutants in which the acsAB gene was disrupted (I.M. Saxena, K. Kudlicka, K. Okuda, and R.M. Brown, Jr., J. Bacteriol. 176:5735-5752, 1994). Although these mutants produced no detectable cellulose, they exhibited significant cellulose synthase activity in vitro. The acsAII gene was isolated by using an acsAB gene fragment as a probe. The acsAII gene coded for cellulose synthase activity as determined from sequence analysis and study of mutants in which this gene was disrupted. A mutant in which only the acsAII gene was disrupted showed no significant differences in either the in vivo cellulose production or the in vitro cellulose synthase activity compared with wild-type cells. Mutants in which both the acsAII and acsAB genes were disrupted produced no cellulose in vivo and exhibited negligible cellulose synthase activity in vitro, thus confirming that the cellulose synthase activity observed in the acsAB mutants was coded by the acsAII gene. These results establish the presence of an additional gene for cellulose synthase expressed in cells of A. xylinum, yet this gene is not required for cellulose production when cells are grown under laboratory conditions.  相似文献   

19.
For the purpose of assessing in vivo the importance of 2,4-dienoyl-CoA reductase (EC 1.3.1.34) in the beta-oxidation of unsaturated fatty acids, reductase mutants of Escherichia coli were isolated by selecting cells that were able to grow on oleate but not on petroselinic acid (6-cis-octadecenoic acid). One mutant (fadH) exhibited 12% of the 2,4-dienoyl-CoA reductase activity present in the parental strain with other beta-oxidation enzymes being essentially unaffected. Antireductase antibodies were used to show that the mutant contains a fadH gene product at a level similar to that observed in the parental strain. Thus, the mutation seems to have resulted in the synthesis of a fadH gene product with lower specific activity. The mutation was mapped in the 71-75-min region of the E. coli chromosome where no other gene for beta-oxidation enzymes has so far been located. Complementation of the mutation by F'141, which carries the 67-75.5-min region of the E. coli genome, resulted in an increase in the 2,4-dienoyl-CoA reductase activity to 80% of the level found in the parental strain. Measurements of respiration with petroselinic acid as the substrate showed rates to be linearly dependent on the 2,4-dienoyl-CoA reductase activity up to levels found in wild-type E. coli. 2,4-Dienoyl-CoA reductase, like other enzymes of beta-oxidation, was induced when E. coli was grown on a long chain fatty acid as the sole carbon source. It is concluded that 2,4-dienoyl-CoA reductase is required in vivo for the beta-oxidation of unsaturated fatty acids with double bonds extending from even-numbered carbon atoms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号