首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The cytochrome bc(1) complex is part of the energy conversion machinery of the respiratory and photosynthetic electron transfer chains. This integral membrane protein complex catalyzes electron transfer from ubiquinol to cytochrome c. It couples the electron transfer to the electrogenic translocation of protons across the membrane via a so-called Q cycle mechanism. RESULTS: The cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae was crystallized together with a bound antibody Fv fragment. The structure was determined at 2.3 A resolution using multiple isomorphous replacement, and refined to a crystallographic R factor of 22.2% (R(free) = 25.4%). The complex is present as a homodimer. Each 'monomer' of the refined model includes 2178 amino acid residues of subunits COR1, QCR2, COB, CYT1, RIP1, QCR6, QCR7, QCR8 and QCR9 of the cytochrome bc(1) complex and of the polypeptides V(H) and V(L) of the Fv fragment, the cofactors heme b(H), heme b(L), heme c(1), the [2Fe-2S] cluster and 346 water molecules. The Fv fragment binds to the extrinsic domain of the [2Fe-2S] Rieske protein and is essential for formation of the crystal lattice. CONCLUSIONS: The approach to crystallize membrane proteins as complexes with specific antibody fragments appears to be of general importance. The structure of the yeast cytochrome bc(1) complex reveals in detail the binding sites of the natural substrate coenzyme Q6 and the inhibitor stigmatellin. Buried water molecules close to the binding sites suggest possible pathways for proton uptake and release. A comparison with other cytochrome bc(1) complexes shows features that are specific to yeast.  相似文献   

2.
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30? along the membrane normal×25? (central inter-monomer distance)×15? (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.  相似文献   

3.
The ubihydroquinone-cytochrome c oxidoreductase (or the cytochrome bc1 complex) from Rhodobacter capsulatus is composed of the Fe-S protein, cytochrome b, and cytochrome c1 subunits encoded by petA(fbcF), petB(fbcB), and petC(fbcC) genes organized as an operon. In the work reported here, petB(fbcB) was split genetically into two cistrons, petB6 and petBIV, which encoded two polypeptides corresponding to the four amino-terminal and four carboxyl-terminal transmembrane helices of cytochrome b, respectively. These polypeptides resembled the cytochrome b6 and su IV subunits of chloroplast cytochrome b6f complexes, and together with the unmodified subunits of the cytochrome bc1 complex, they formed a novel enzyme, named cytochrome b6c1 complex. This membrane-bound multisubunit complex was functional, and despite its smaller amount, it was able to support the photosynthetic growth of R. capsulatus. Upon further mutagenesis, a mutant overproducing it, due to a C-to-T transition at the second base of the second codon of petBIV, was obtained. Biochemical analyses, including electron paramagnetic spectroscopy, with this mutant revealed that the properties of the cytochrome b6c1 complex were similar to those of the cytochrome bc1 complex. In particular, it was highly sensitive to inhibitors of the cytochrome bc1 complex, including antimycin A, and the redox properties of its b- and c-type heme prosthetic groups were unchanged. However, the optical absorption spectrum of its cytochrome bL heme was modified in a way reminiscent of that of a cytochrome b6f complex. Based on the work described here and that with Rhodobacter sphaeroides (R. Kuras, M. Guergova-Kuras, and A. R. Crofts, Biochemistry 37:16280-16288, 1998), it appears that neither the inhibitor resistance nor the redox potential differences observed between the bacterial (or mitochondrial) cytochrome bc1 complexes and the chloroplast cytochrome b6f complexes are direct consequences of splitting cytochrome b into two separate polypeptides. The overall findings also illustrate the possible evolutionary relationships among various cytochrome bc oxidoreductases.  相似文献   

4.
5.
Cytochrome f of oxygenic photosynthesis has an unprecedented structure, including the N-terminus being a heme ligand. The adjacent N-terminal heme-shielding domain is enriched in aromatic amino acids. The atomic structures of the chloroplast and cyanobacterial cytochromes f were compared to explain spectral and redox differences between them. The conserved aromatic side chain in the N-terminal heme-shielding peptide at position 4, Phe and Tyr in plants and algae, respectively, and Trp in cyanobacteria, is in contact with the heme. Mutagenesis of cytochrome f from the eukaryotic green alga Chlamydomonas reinhardtii showed that a Phe4 --> Trp substitution in the N-terminal domain was unique in causing a red shift of 1 and 2 nm in the cytochrome Soret (gamma) and Q (alpha) visible absorption bands, respectively. The resulting alpha band peak at 556 nm is characteristic of the cyanobacterial cytochrome. Conversely, a Trp4 --> Phe mutation in the expressed cytochrome from the cyanobacterium Phormidium laminosum caused a blue shift to the 554 nm alpha band peak diagnostic of the chloroplast cytochrome. Residue 4 was found to be the sole determinant of this 60 cm(-)(1) spectral shift, and of approximately one-half of the 70 mV redox potential difference between cytochrome f of P. laminosum and C. reinhardtii (E(m7) = 297 and 370 mV, respectively). The proximity of Trp-4 to the heme implies that the spectral and redox potential shifts arise through differential interaction of its sigma- or pi-electrostatic potential with the heme ring and of the pi-potential with the heme Fe orbitals, respectively. The dependence of the visible spectrum and redox potential of cytochrome f on the identity of aromatic residue 4 provides an example of the use of the relatively sharp cytochrome spectrum as a "spectral fingerprint", and of the novel structural connection between the heme and a single nonliganding residue.  相似文献   

6.
The organization of chromophores in the cytochrome b(6) f from Chlamydomonas reinhardtii has been studied spectroscopically. Linear dichroism (LD) measurements, performed on the complex co-reconstituted into vesicles with photosynthetic reaction centers as an internal standard, allow the determination of the orientations of the chromophore with respect to the membrane plane. The orientations of the b(H)- and b(L)-hemes are comparable to those determined crystallographically on the cytochrome bc(1). The excitonic CD signal, resulting from the interaction between b-hemes, is similar to that reported for the cytochrome bc(1). LD and CD data are consistent with the differences between the b(6) f and bc(1) leaving the orientation of the b-hemes unaffected. By contrast, the LD data yield a different orientation for the heme f as compared either to the heme c(1) in the crystallographic structures or to the heme f as studied by electron paramagnetic resonance. This difference could either result from incorrect assumptions regarding the orientations of the electronic transitions of the f-heme or may point to the possibility of a redox-dependent movement of cytochrome f. The chlorophyll a was observed in a well defined orientation, further corroborating a specific binding site for it in the b(6) f complex.  相似文献   

7.
Cytochrome bc1 complexes of microorganisms.   总被引:17,自引:2,他引:15       下载免费PDF全文
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae.  相似文献   

8.
The cytochrome bf complex, which links electron transfer from photosystem II to photosystem I in oxygenic photosynthesis, has not been amenable to site-directed mutagenesis in cyanobacteria. Using the cyanobacterium Synechococcus sp. PCC 7002, we have successfully modified the cytochrome b(6) subunit of the cytochrome bf complex. Single amino acid substitutions in cytochrome b(6) at the positions D148, A154, and S159 revealed altered binding of the quinol-oxidation inhibitors 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), myxothiazol, and stigmatellin. Cytochrome bf and mitochondrial-type cytochrome bc(1) complexes are closely related in structure and function but exhibit quite different inhibitor specificities. Cytochrome bf complexes are insensitive to myxothiazol and sensitive to DBMIB, whereas cytochrome bc(1) complexes are sensitive to myxothiazol and relatively insensitive to DBMIB. Measurements of flash-induced and steady-state electron transfer rates through the cytochrome bf complex revealed increased resistance to DBMIB in the mutants A154G and S159A, increased resistance to stigmatellin in A154G, and created sensitivity to myxothiazol in the mutant D148G. Therefore these mutations made the cytochrome bf complex more like the cytochrome bc(1) complex. This work demonstrates that cyanobacteria can be used as effective models to investigate structure-function relationships in the cytochrome bf complex.  相似文献   

9.
At least two features of the crystal structures of the cytochrome b6f complex from the thermophilic cyanobacterium, Mastigocladus laminosus and a green alga, Chlamydomonas reinhardtii, have implications for the pathways and mechanism of charge (electron/proton) transfer in the complex: (i) The narrow 11 x 12 A portal between the p-side of the quinone exchange cavity and p-side plastoquinone/quinol binding niche, through which all Q/QH2 must pass, is smaller in the b6f than in the bc1 complex because of its partial occlusion by the phytyl chain of the one bound chlorophyll a molecule in the b6f complex. Thus, the pathway for trans-membrane passage of the lipophilic quinone is even more labyrinthine in the b6f than in the bc1 complex. (ii) A unique covalently bound heme, heme cn, in close proximity to the n-side b heme, is present in the b6f complex. The b6f structure implies that a Q cycle mechanism must be modified to include heme cn as an intermediate between heme bn and plastoquinone bound at a different site than in the bc1 complex. In addition, it is likely that the heme bn-cn couple participates in photosytem I-linked cyclic electron transport that requires ferredoxin and the ferredoxin: NADP+ reductase. This pathway through the n-side of the b6f complex could overlap with the n-side of the Q cycle pathway. Thus, either regulation is required at the level of the redox state of the hemes that would allow them to be shared by the two pathways, and/or the two different pathways are segregated in the membrane.  相似文献   

10.
Borek A  Sarewicz M  Osyczka A 《Biochemistry》2008,47(47):12365-12370
Cytochrome bc(1), a key enzyme of biological energy conversion, generates or uses a proton motive force through the Q cycle that operates within the two chains of cofactors that embed two catalytic quinone oxidation/reduction sites, the Q(o) site and the Q(i) site. The Q(o) site relies on the joint action of two cofactors, the iron-sulfur (FeS) cluster and heme b(L). Side reactions of the Q cycle involve a generation of superoxide which is commonly thought to be a product of an oxidation of a highly unstable semiquinone formed in the Q(o) site (SQ(o)), but the overall mechanism of superoxide generation remains poorly understood. Here, we use selectively modified chains of cytochrome bc(1) to clearly isolate states linked with superoxide production. We show that this reaction takes place under severely impeded electron flow that traps heme b(L) in the reduced state and reflects a probability with which a single electron on SQ(o) is capable of reducing oxygen. SQ(o) gains this capability only when the FeS head domain, as a part of a catalytic cycle, transiently leaves the Q(o) site to communicate with the outermost cofactor, cytochrome c(1). This increases the distance between the FeS cluster and the remaining portion of the Q(o) site, reducing the likelihood that the FeS cluster participates in an immediate removal of SQ(o). In other states, the presence of both the FeS cluster and heme b(L) in the Q(o) site increases the probability of completion of short-circuit reactions which retain single electrons within the enzyme instead of releasing them on oxygen. We propose that in this way, cytochrome bc(1) under conditions of impeded electron flow employs the leak-proof short-circuits to minimize the unwanted single-electron reduction of oxygen.  相似文献   

11.
Resonance Raman spectra of cytochrome b6f complexes isolated from spinach chloroplasts have been obtained. Selective resonance enhancements and partial reductions of the complex by redox mediators were used to isolate and identify the contributions of heme b6 and heme f sites to the observed spectra. Corresponding spectra for turnip cytochrome f have also been obtained. Power-dependent photoreduction was observed in cytochrome f of the complex as well as in the isolated cytochrome f during the course of the Raman experiments.  相似文献   

12.
At the heart of the Q cycle hypothesis, the cytochrome bc1 complex (bc1) is required to separate the two electrons from a quinol molecule at the quinol oxidation site. Recent studies have brought to light an intricate mechanism for this bifurcated electron transfer. A survey of the protein data bank shows 30 entries for the structures of bc1 and the homologous b6 f complex. These structures provide considerable insights into the structural organization of mitochondrial, bacterial, and plant enzymes. Crystallographic binding studies of bc1 with either quinone reduction (QN) and/or quinol oxidation (QP) site inhibitors offer atomic details on how these compounds interact with residues at their respective sites. Most importantly, the different locations and apparent flexibility observed in crystals for the extrinsic domain of the iron-sulfur protein (ISP) subunit suggest a mechanism for electron bifurcation at the QP site. Analyses of various inhibitor-bound structures revealed two classes of QP site inhibitors: Pm inhibitors that promote ISP mobility and Pf inhibitors that favor the fixation of the ISP conformation. Those analyses also shed light on a possible process by which the ISP motion switch is controlled. The first phase reduction of ISP is shown to be comparable to the reduction of the bL heme by pre-steady state kinetic analysis, whereas the second phase reduction of ISP share similar kinetics with the reduction of the bH heme. The reduction of cyt c1 is measured much slower, indicating that the reduced ISP remains bound at the QP site until the reduced heme bL is oxidized by the heme bH and supporting the existence of a control mechanism for the ISP motion switch.  相似文献   

13.
During oxygenic photosynthesis, cytochrome c(6) shuttles electrons between the membrane-bound complexes cytochrome bf and photosystem I. Complex formation between Phormidium laminosum cytochrome f and cytochrome c(6) from both Anabaena sp. PCC 7119 and Synechococcus elongatus has been investigated by nuclear magnetic resonance spectroscopy. Chemical-shift perturbation analysis reveals a binding site on Anabaena cytochrome c(6), which consists of a predominantly hydrophobic patch surrounding the heme substituent, methyl 5. This region of the protein was implicated previously in the formation of the reactive complex with photosytem I. In contrast to the results obtained for Anabaena cytochrome c(6), there is no evidence for specific complex formation with the acidic cytochrome c(6) from Synechococcus. This remarkable variability between analogous cytochromes c(6) supports the idea that different organisms utilize distinct mechanisms of photosynthetic intermolecular electron transfer.  相似文献   

14.
Heliobacterium modesticaldum is a Gram-positive, anaerobic, anoxygenic photoheterotrophic bacterium. Its cytochrome bc complex (Rieske/cyt b complex) has some similarities to cytochrome b(6)f complexes from cyanobacteria and chloroplasts, and also shares some characteristics of typical bacterial cytochrome bc(1) complexes. One of the unique factors of the heliobacterial cytochrome bc complex is the presence of a diheme cytochrome c instead of the monoheme cytochrome f in the cytochrome b(6)f complex or the monoheme cytochrome c(1) in the bc(1) complex. To understand the structure and function of this diheme cytochrome c protein, we expressed the N-terminal transmembrane-helix-truncated soluble H. modesticaldum diheme cytochrome c in Escherichia coli. This 25kDa recombinant protein possesses two c-type hemes, confirmed by mass spectrometry and a variety of biochemical techniques. Sequence analysis of the H. modesticaldum diheme cytochrome c indicates that it may have originated from gene duplication and subsequent gene fusion, as in cytochrome c(4) proteins. The recombinant protein exhibits a single redox midpoint potential of +71mV versus NHE, which indicates that the two hemes have very similar protein environments.  相似文献   

15.
Biochemical analyses of Rubrivivax gelatinosus membranes have revealed that the cytochrome bc(1) complex is highly resistant to classical inhibitors including myxothiazol, stigmatellin, and antimycin. This is the first report of a strain exhibiting resistance to inhibitors of both catalytic Q(0) and Q(i) sites. Because the resistance to cytochrome bc(1) inhibitors is primarily related to the cytochrome b primary structure, the petABC operon encoding the subunits of the cytochrome bc(1) complex of Rubrivivax gelatinosus was sequenced. In addition to homologies to the corresponding proteins from other organisms, the deduced amino acid sequence of the cytochrome b polypeptide shows (i) an E303V substitution in the highly conserved PEWY loop involved in quinol/stigmatellin binding, (ii) other substitutions that could be involved in resistance to cytochrome bc(1) inhibitors, and (iii) 14 residues instead of 13 between the histidines in helix IV that likely serve as the second axial ligand to the b(H) and b(L) hemes, respectively. These characteristics imply different functional properties of the cytochrome bc(1) complex of this bacterium. The consequences of these structural features for the resistance to inhibitors and for the properties of R. gelatinosus cytochrome bc(1) are discussed with reference to the structure and function of the cytochrome bc(1) complexes from other organisms.  相似文献   

16.
Structural alignment of the integral cytochrome b6-SU IV subunits with the solved structure of the mitochondrial bc1 complex shows a pronounced asymmetry. There is a much higher homology on the p-side of the membrane, suggesting a similarity in the mechanisms of intramembrane and interfacial electron and proton transfer on the p-side, but not necessarily on the n-side. Structural differences between the bc1 and b6f complexes appear to be larger the farther the domain or subunit is removed from the membrane core, with extreme differences between cytochromes c1 and f. A special role for the dimer may involve electron sharing between the two hemes b(p), which is indicated as a probable event by calculations of relative rate constants for intramonomer heme b(p) --> heme b(n), or intermonomer heme b(p) --> heme b(p) electron transfer. The long-standing observation of flash-induced oxidation of only approximately 0.5 of the chemical content of cyt f may be partly a consequence of the statistical population of ISP bound to cytfon the dimer. It is proposed that the p-side domain of cyt f is positioned with its long axis parallel to the membrane surface in order to: (i) allow its large and small domains to carry out the functions of cyt c1 and suVIII, respectively, of the bc1 complex, and (ii) provide maximum dielectric continuity with the membrane. (iii) This position would also allow the internal water chain ("proton wire") of cyt f to serve as the p-side exit port for an intramembrane H+ transfer chain that would deprotonate the semiquinol located in the myxothiazol/MOA-stilbene pocket near heme b(p). A hypothesis is presented for the identity of the amino acid residues in this chain.  相似文献   

17.
Flash-induced redox changes of b-type and c-type cytochromes have been studied in chromatophores from the aerobic photosynthetic bacterium Roseobacter denitrificans under redox-controlled conditions. The flash-oxidized primary donor P+ of the reaction center (RC) is rapidly re-reduced by heme H1 (Em,7 = 290 mV), heme H2 (Em,7 = 240 mV) or low-potential hemes L1/L2 (Em,7 = 90 mV) of the RC-bound tetraheme, depending on their redox state before photoexcitation. By titrating the extent of flash-induced low-potential heme oxidation, a midpoint potential equal to -50 mV has been determined for the primary quinone acceptor QA. Only the photo-oxidized heme H2 is re-reduced in tens of milliseconds, in a reaction sensitive to inhibitors of the bc1 complex, leading to the concomitant oxidation of a cytochrome c spectrally distinct from the RC-bound hemes. This reaction involves cytochrome c551 in a diffusional process. Participation of the bc1 complex in a cyclic electron transfer chain has been demonstrated by detection of flash-induced reduction of cytochrome b561, stimulated by antimycin and inhibited by myxothiazol. Cytochrome b561, reduced upon flash excitation, is re-oxidized slowly even in the absence of antimycin. The rate of reduction of cytochrome b561 in the presence of antimycin increases upon lowering the ambient redox potential, most likely reflecting the progressive prereduction of the ubiquinone pool. Chromatophores contain approximately 20 ubiquinone-10 molecules per RC. At the optimal redox poise, approximately 0.3 cytochrome b molecules per RC are reduced following flash excitation. Cytochrome b reduction titrates out at Eh < 100 mV, when low-potential heme(s) rapidly re-reduce P+ preventing cyclic electron transfer. Results can be rationalized in the framework of a Q-cycle-type model.  相似文献   

18.
The results of a comprehensive Q-band resonance Raman investigation of cytochrome c1 and cytochrome f subunits of bc1 and b6f complexes are presented. Q-band excitation provides a particularly effective probe of the local heme environments of these species. The effects of protein conformation (particularly axial ligation) on heme structure and function were further investigated by comparison of spectra obtained from native subunits to those of a site directed c1 mutant (M183L) and various pH-dependent species of horse heart cytochrome c. In general, all species examined displayed variability in their axial amino acid ligation that suggests a good deal of flexibility in their hemepocket conformations. Surprisingly, the large scale protein rearrangements that accompany axial ligand replacement have little or no effect on macrocycle geometry in these species. This indicates the identity and/or conformation of the peptide linkage between the two cysteines that are covalently linked to the heme periphery may determine heme geometry.  相似文献   

19.
The redox components of the cytochrome bc1 complex from the acidophilic chemolithotrophic organism Thiobacillus ferrooxidans were investigated by potentiometric and spectroscopic techniques. Optical redox titrations demonstrated the presence of two b-type hemes with differing redox midpoint potentials at pH 7.4 (-169 and + 20 mV for bL and bH, respectively). At pH 3.5, by contrast, both hemes appeared to titrate at about +20 mV. Antimycin A, 2-heptyl-4-hydroxyquinoline N-oxide, and stigmatellin induced distinguishable shifts of the b hemes' alpha-bands, providing evidence for the binding of antimycin A and 2-heptyl-4-hydroxyquinoline N-oxide near heme bH (located on the cytosolic side of the membrane) and of stigmatellin near heme bL (located on the periplasmic side of the membrane). The inhibitors stigmatellin, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole, and 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone affected the EPR spectrum of the Rieske iron-sulfur center in a way that differs from what has been observed for cytochrome bc1 or b6f complexes. The results obtained demonstrate that the T. ferrooxidans complex, although showing most of the features characteristic for bc1 complexes, contains unique properties that are most probably related to the chemolithotrophicity and/or acidophilicity of its parent organism. A speculative model for reverse electron transfer through the T. ferrooxidans complex is proposed.  相似文献   

20.
Cytochrome f and plastocyanin from the cyanobacterium Phormidium laminosum react an order of magnitude faster than their counterparts from chloroplasts when long-range electrostatic interactions have been screened out by high salt concentration [Schlarb-Ridley, B. G., et al. (2002) Biochemistry 41, 3279-3285]. To investigate the relative contributions of the reaction partners to these differences, the reactions of turnip cytochrome f with P. laminosum plastocyanin and P. laminosum cytochrome f with pea plastocyanin were examined. Exchanging one of the plant reaction partners with the corresponding cyanobacterial protein nearly abolished electron transfer at low ionic strength but increased the rate at high ionic strength. This increase was larger for P. laminosum cytochrome f than for P. laminosumplastocyanin. To identify molecular features of P. laminosum cytochrome f that contribute to the increase, the effect of mutations in the N-terminal heme-shielding peptide on the reaction with P. laminosum plastocyanin was determined. Phenylalanine-3 was converted to valine and tryptophan-4 to phenylalanine or leucine. The mutations lowered the rate constant at 0.1 M ionic strength by factors of 0.71 for F4V, 0.42 for W4F, and 0.63 for W4L while introducing little change in the shape of the ionic strength dependence curve. When the N-terminal tetrapeptide (sequence YPFW) was converted into that found in the chloroplast of Chlamydomonas reinhardtii (YPVF), the reaction was slowed further (factor of 0.26). The N-terminal heme-shielding peptide was found to be responsible for 75% of the kinetic differences between cytochrome f from chloroplasts and the cyanobacterium when electrostatic interactions were eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号