首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.  相似文献   

2.
The 26S proteasome, composed of the 20S core and the 19S regulatory complex, plays a central role in ubiquitin-dependent proteolysis by catalyzing degradation of polyubiquitinated proteins. In a search for proteins involved in regulation of the proteasome, we affinity purified the 19S regulatory complex from HeLa cells and identified a novel protein of 43 kDa in size as an associated protein. Immunoprecipitation analyses suggested that this protein specifically interacted with the proteasomal ATPases. Hence the protein was named proteasomal ATPase-associated factor 1 (PAAF1). Immunoaffinity purification of PAAF1 confirmed its interaction with the 19S regulatory complex and further showed that the 19S regulatory complex bound with PAAF1 was not stably associated with the 20S core. Overexpression of PAAF1 in HeLa cells decreased the level of the 20S core associated with the 19S complex in a dose-dependent fashion, suggesting that PAAF1 binding to proteasomal ATPases inhibited the assembly of the 26S proteasome. Proteasomal degradation assays using reporters based on green fluorescent protein revealed that overexpression of PAAF1 inhibited the proteasome activity in vivo. Furthermore, the suppression of PAAF1 expression that is mediated by small inhibitory RNA enhanced the proteasome activity. These results suggest that PAAF1 functions as a negative regulator of the proteasome by controlling the assembly/disassembly of the proteasome.  相似文献   

3.
The 26 S proteasome is the eukaryotic protease responsible for the degradation of most cellular proteins. As such it accommodates the ability to function under diverse conditions that the cell may encounter. This function is supported by various adaptors that modulate various aspects in protein degradation, these include regulation of substrate delivery, deubiquitination, unfolding, and 20 S gate dilation. Here we show a new functional complex between the P97 and the proteasome that is assembled in response to proteasomal impairment. This entails P97 binding to the 26 S proteasome via the 19 S particle thereby forming an additional hexameric ATPase ring to relieve repression. P97-bound proteasomes showed selective binding toward the Npl4-ufd1 P97 co-factors, indicating a unique cellular role for P97 binding to proteasomes. P97-bound proteasomes display enhanced activity, showing a relief in proteolysis impairment. Our findings place P97 directly in non-ERAD proteasomal functions and establish a new checkpoint in UPS impairment. The ability to modulate proteasome activity and properly respond to protein misfolding, is of great importance in cellular regulation.  相似文献   

4.
Regulatory subunit interactions of the 26S proteasome, a complex problem   总被引:16,自引:0,他引:16  
The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitin-mediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.  相似文献   

5.
We previously demonstrated that the proteasome activator REGgamma directs degradation of the steroid receptor coactivator SRC-3 by the 20S proteasome in an ATP- and ubiquitin-independent manner. Our efforts to identify additional endogenous direct targets of the REGgamma proteasome revealed that p21(Waf/Cip1), a central cyclin-dependent kinase inhibitor, is another endogenous target. Gain-of-function analysis, RNAi knockdown, REGgamma-deficient MEF analysis, and pulse-chase experiments substantiate that REGgamma promotes degradation of unbound p21. Cell-free proteasome proteolysis assays using purified REGgamma, p21, and the 20S proteasome confirm that REGgamma directly mediates degradation of free p21 in an ATP- and ubiquitin-independent manner. Depletion of REGgamma in a thyroid carcinoma cell line results in cell-cycle and proliferative alterations. Our study reveals that, in addition to degrading the SRC-3 growth coactivator, REGgamma also has a role in the regulation of the cell cycle through its ability to influence the level of a cell-cycle regulator(s).  相似文献   

6.
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.  相似文献   

7.
Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45°C triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions.  相似文献   

8.
The eukaryotic 20S proteasome is the multifunctional catalytic core of the 26S proteasome, which plays a central role in intracellular protein degradation. Association of the 20S core with a regulatory subcomplex, termed PA700 (also known as the 19S cap), forms the 26S proteasome, which degrades ubiquitinated and nonubiquitinated proteins through an ATP-dependent process. Although proteolytic assistance by this regulatory particle is a general feature of proteasome-dependent turnover, the 20S proteasome itself can degrade some proteins directly, bypassing ubiquitination and PA700, as an alternative mechanism in vitro. The mechanism underlying this pathway is based on the ability of the 20S proteasome to recognize partially unfolded proteins. Here we show that the 20S proteasome recognizes the heat-denatured forms of model proteins such as citrate synthase, malate dehydrogenase. and glyceraldehydes-3-phosphate dehydrogenase, and prevents their aggregation in vitro. This process was not followed by the refolding of these denatured substrates into their native states, whereas PA700 or the 26S proteasome generally promotes their reactivation. These results indicate that the 20S proteasome might play a role in maintaining denatured and misfolded substrates in a soluble state, thereby facilitating their refolding or degradation.  相似文献   

9.
The 20 S proteasome has been suggested to play a critical role in mediating the degradation of abnormal proteins under conditions of oxidative stress and has been found in tight association with the molecular chaperone Hsp90. To elucidate the role of Hsp90 in promoting the degradation of oxidized calmodulin (CaM(ox)), we have purified red blood cell 20 S proteasomes free of Hsp90 and assessed their ability to degrade CaM(ox) in the absence or presence of Hsp90. Purified 20 S proteasome does not degrade CaM(ox) unless Hsp90 is added. CaM(ox) degradation is sensitive to both proteasome and Hsp90-specific inhibitors and is further enhanced in the presence of 2 mm ATP. Irrespective of the presence of Hsp90, we find that unoxidized CaM is not significantly degraded. Direct binding measurements demonstrate that Hsp90 selectively associates with CaM(ox); essentially no binding is observed between Hsp90 and unoxidized CaM. These results indicate that Hsp90 in association with the 20 S proteasome can selectively associate with oxidized and partially unfolded CaM to promote degradation by the proteasome.  相似文献   

10.
Plant cells contain a mixture of 26S and 20S proteasomes that mediate ubiquitin-dependent and ubiquitin-independent proteolysis, respectively. The 26S proteasome contains the 20S proteasome and one or two regulatory particles that are required for ubiquitin-dependent degradation. Comparative analyses of Arabidopsis proteasome mutants revealed that a decrease in 26S proteasome biogenesis causes heat shock hypersensitivity and reduced cell division rates that are compensated by increased cell expansion. Loss of 26S proteasome function also leads to an increased 20S proteasome biogenesis, which in turn enhances the cellular capacity to degrade oxidized proteins and thus increases oxidative stress tolerance. These findings suggest the intriguing possibility that 26S and 20S proteasome activities are regulated to control plant development and stress responses. This mini-review highlights some of the recent studies on proteasome regulation in plants.Key words: proteasome, cell division, ubiquitin-dependent proteolysis, ubiquitin-independent proteolysis, stress responses  相似文献   

11.
Altered proteasome function and subunit composition in aged muscle   总被引:5,自引:0,他引:5  
Myofibrillar protein degradation is mediated through the ubiquitin-proteasome pathway. To investigate if altered proteasome activity plays a role in age-related muscle atrophy, we examined muscle size and proteasome function in young and aged F344BN rats. Significant age-related muscle atrophy was confirmed by the 38% decrease in cross-sectional area of type 1 fibers in soleus muscle. Determination of proteasome function showed hydrolysis of fluorogenic peptides was equivalent between ages. However, when accounting for the 3-fold increase in content of the 20S catalytic core in aged muscle, the lower specific activity suggests a functional loss in individual proteins with aging. Comparing the composition of the catalytic beta-subunits showed an age-related 4-fold increase in the cytokine-inducible subunits, LMP2 and LMP7. Additionally, the content of the activating complexes, PA28 and PA700, relative to the 20S proteasome was reduced 50%. These results suggest significant alterations in the intrinsic activity, the percentage of immunoproteasome, and the regulation of the 20S proteasome by PA28 and PA700 in aged muscle.  相似文献   

12.
The 26S proteasome is a large multi-subunit protein complex that exerts specific degradation of proteins in the cell. The 26S proteasome consists of the 20S proteolytic particle and the 19S regulator. In order to be targeted for proteasomal degradation most of the proteins must undergo the post-translational modification of poly-ubiquitination. However, a number of proteins can also be degraded by the proteasome via a ubiquitin-independent pathway. Such degradation is exercised largely through the binding of substrate proteins to the PSMA3 (alpha 7) subunit of the 20S complex. However, a systematic analysis of proteins interacting with PSMA3 has not yet been carried out. In this report, we describe the identification of proteins associated with PSMA3 both in the cytoplasm and nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and tandem mass-spectrometry revealed a large number of PSMA3-bound proteins that are involved in various aspects of mRNA metabolism, including splicing. In vitro biochemical studies confirmed the interactions between PSMA3 and splicing factors. Moreover, we show that 20S proteasome is involved in the regulation of splicing in vitro of SMN2 (survival motor neuron 2) gene, whose product controls apoptosis of neurons.  相似文献   

13.
14.
Proteasomes are large supramolecular protein complexes present in all prokaryotic and eukaryotic cells, where they perform targeted degradation of intracellular proteins. Until recently, it was generally accepted that prior to proteolytic degradation in proteasomes the proteins had to be targeted by ubiquitination: ATP-dependent attachment of (typically four sequential) residues of the low-molecular protein, ubiquitin, which involves the ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin ligase. Cytoplasmic and nucleoplasmic proteins labeled in this way are then digested in 26S proteasomes. However, it becomes increasingly clear that using this route the cell eliminates only a part of unwanted proteins. Many proteins can be cleaved by the 20S proteasome in an ATP-independent manner and without previous ubiquitination. Ubiquitin-independent degradation of proteins in proteasomes is a relatively new area of studies of the role of the ubiquitin-proteasome system. However, recent data obtained in this direction already correct existing concepts about proteasomal degradation of proteins and its regulation. Ubiquitin-independent proteasome degradation needs the main structural precondition in proteins: the presence of unstructured regions in the amino acid sequences that provide interaction with the proteasome. Taking into consideration that in humans almost half of all genes encode proteins that contain a certain proportion of intrinsically disordered regions, it appears that the list of proteins undergoing ubiquitin-independent degradation will demonstrate a further increase. Since 26S proteasomes account for only 30% of the total proteasome content in mammalian cells, most of the proteasomes exist in the form of 20S complexes. The latter suggests that ubiquitin-independent proteolysis performed by the 20S proteasome is a natural process of removing damaged proteins from the cell and maintaining a constant level of intrinsically disordered proteins. In this case, the functional overload of proteasomes in aging and/or other types of pathological processes, if it is not accompanied by triggering more radical mechanisms for the elimination of damaged proteins, organelles, and whole cells, has the most serious consequences for the whole organism.  相似文献   

15.
The 26 S proteasome, composed of the 20 S core and 19 S regulatory particle, plays a central role in ubiquitin-dependent proteolysis. Disruption of this process contributes to the pathogenesis of the various diseases; however, the mechanisms underlying the regulation of 26 S proteasome activity remain elusive. Here, cell culture experiments and in vitro assays demonstrated that apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPK kinase kinase family, negatively regulated 26 S proteasome activity. Immunoprecipitation/Western blot analyses revealed that ASK1 did not interact with 20 S catalytic core but did interact with ATPases making up the 19 S particle, which is responsible for recognizing polyubiquitinated proteins, unfolding them, and translocating them into the 20 S catalytic core in an ATP-dependent process. Importantly, ASK1 phosphorylated Rpt5, an AAA ATPase of the 19 S proteasome, and inhibited its ATPase activity, an effect that may underlie the ability of ASK1 to inhibit 26 S proteasome activity. The current findings point to a novel role for ASK1 in the regulation of 26 S proteasome and offer new strategies for treating human diseases caused by proteasome malfunction.  相似文献   

16.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.  相似文献   

17.
Protein degradation is a physiological process required to maintain cellular functions. There are distinct proteolytic systems for different physiological tasks under changing environmental and pathophysiological conditions. The proteasome is responsible for the removal of oxidatively damaged proteins in the cytosol and nucleus. It has been demonstrated that proteasomal degradation increases due to mild oxidation, whereas at higher oxidant levels proteasomal degradation decreases. Moreover, the proteasome itself is affected by oxidative stress to varying degrees. The ATP-stimulated 26S proteasome is sensitive to oxidative stress, whereas the 20S form seems to be resistant. Non-degradable protein aggregates and cross-linked proteins are able to bind to the proteasome, which makes the degradation of other misfolded and damaged proteins less efficient. Consequently, inhibition of the proteasome has dramatic effects on cellular aging processes and cell viability. It seems likely that during oxidative stress cells are able to keep the nuclear protein pool free of damage, while cytosolic proteins may accumulate. This is because of the high proteasome content in the nucleus, which protects the nucleus from the formation and accumulation of non-degradable proteins. In this review we highlight the regulation of the proteasome during oxidative stress and aging.  相似文献   

18.
19.
Assembly of the eukaryotic 20S proteasome is an ordered process involving several proteins operating as proteasome assembly factors including PAC1-PAC2 but archaeal 20S proteasome subunits can spontaneously assemble into an active cylindrical architecture. Recent bioinformatic analysis identified archaeal PAC1-PAC2 homologs PbaA and PbaB. However, it remains unclear whether such assembly factor-like proteins play an indispensable role in orchestration of proteasome subunits in archaea. We revealed that PbaB forms a homotetramer and exerts a dual function as an ATP-independent proteasome activator and a molecular chaperone through its tentacle-like C-terminal segments. Our findings provide insights into molecular evolution relationships between proteasome activators and assembly factors.  相似文献   

20.
The ubiquitin/26S proteasome pathway is a basic biological mechanism involved in the regulation of a multitude of cellular processes. Increasing evidence indicates that plants utilize the ubiquitin/26S proteasome pathway in their immune response to pathogen invasion, emphasizing the role of this pathway during plant–pathogen interactions. The specific functions of proteasomal degradation in plant–pathogen interactions are diverse, and do not always benefit the host plant. Although in some cases, proteasomal degradation serves as an effective barrier to help plants ward off pathogens, in others, it is used by the pathogen to enhance the infection process. This review discusses the different roles of the ubiquitin/26S proteasome pathway during interactions of plants with pathogenic viruses, bacteria, and fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号