首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of mammalian eIF4E-family members.   总被引:7,自引:0,他引:7  
The translational factor eukaryotic initiation factor 4E (eIF4E) is a central component in the initiation and regulation of translation in eukaryotic cells. Through its interaction with the 5' cap structure of mRNA, eIF4E functions to recruit mRNAs to the ribosome. The accumulation of expressed sequence tag sequences has allowed the identification of three different eIF4E-family members in mammals termed eIF4E-1, eIF4E-2 (4EHP, 4E-LP) and eIF4E-3, which differ in their structural signatures, functional characteristics and expression patterns. Unlike eIF4E-1, which is found in all eukaryotes, orthologues for eIF4E-2 appear to be restricted to metazoans, while those for eIF4E-3 have been found only in chordates. Like prototypical eIF4E-1, eIF4E-2 was found to be ubiquitously expressed, with the highest levels in the testis. Expression of eIF4E-3 was detected only in heart, skeletal muscle, lung and spleen. Similarly to eIF4E-1, both eIF4E-2 and eIF4E-3 can bind to the mRNA cap-structure. However, in contrast to eIF4E-1 which interacts with both the scaffold protein, eIF4G and the translational repressor proteins, the eIF4E-binding proteins (4E-BPs), eIF4E-2 and eIF4E-3 each possesses a range of partial activities. eIF4E-2 does not interact with eIF4G, but does interact with 4E-BPs. Conversely, eIF4E-3 interacts with eIF4G, but not with 4E-BPs. Neither eIF4E-2 nor eIF4E-3 is able to rescue the lethality of eIF4E gene deletion in yeast. It is hypothesized that each eIF4E-family member fills a specialized niche in the recruitment of mRNAs by the ribosome through differences in their abilities to bind cap and/or to interact with eIF4G and the 4E-BPs.  相似文献   

2.
The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.  相似文献   

3.
Eukaryotic translation initiation factor 4E (eIF4E) is a key factor involved in different aspects of mRNA metabolism. Drosophila melanogaster genome encodes eight eIF4E isoforms, and the canonical isoform eIF4E-1 is a ubiquitous protein that plays a key role in mRNA translation. eIF4E-3 is specifically expressed in testis and controls translation during spermatogenesis. In eukaryotic cells, translational control and mRNA decay is highly regulated in different cytoplasmic ribonucleoprotein foci, which include the processing bodies (PBs). In this study, we show that Drosophila eIF4E-1 and eIF4E-3 occur in PBs along the DEAD-box RNA helicase Me31B. We show that Me31B interacts with eIF4E-1 and eIF4E-3 by means of yeast two-hybrid system, FRET in D. melanogaster S2 cells and coimmunoprecipitation in testis. Truncation and point mutations of Me31B proteins show two eIF4E-binding sites located in different protein domains. Residues Y401-L407 (at the carboxy-terminus) are essential for interaction with eIF4E-1, whereas residues F63-L70 (at the amino-terminus) are critical for interaction with eIF4E-3. The residue W117 in eIF4E-1 and the homolog position F103 in eIF4E-3 are necessary for Me31B-eIF4E interaction suggesting that the change of tryptophan to phenylalanine provides specificity. Me31B represents a novel type of eIF4E-interacting protein with dual and specific interaction domains that might be recognized by different eIF4E isoforms in different tissues, adding complexity to the control of gene expression in eukaryotes.  相似文献   

4.
All eukaryotic mRNAs possess a 5'-cap (m(7)GpppN) that is recognized by a family of cap-binding proteins. These participate in various processes, such as RNA transport and stabilization, as well as in assembly of the translation initiation complex. The 5'-cap of trypanosomatids is complex; in addition to 7-methyl guanosine, it includes unique modifications on the first four transcribed nucleotides, and is thus denoted cap-4. Here we analyze a cap-binding protein of Leishmania, in an attempt to understand the structural features that promote its binding to this unusual cap. LeishIF4E-1, a homolog of eIF4E, contains the conserved cap-binding pocket, similar to its mouse counterpart. The mouse eIF4E has a higher K(as) for all cap analogs tested, as compared with LeishIF4E-1. However, whereas the mouse eIF4E shows a fivefold higher affinity for m(7)GTP than for a chemically synthesized cap-4 structure, LeishIF4E-1 shows similar affinities for both ligands. A sequence alignment shows that LeishIF4E-1 lacks the region that parallels the C terminus in the murine eIF4E. Truncation of this region in the mouse protein reduces the difference that is observed between its binding to m(7)GTP and cap-4, prior to this deletion. We hypothesize that variations in the structure of LeishIF4E-1, possibly also the absence of a region that is homologous to the C terminus of the mouse protein, promote its ability to interact with the cap-4 structure. LeishIF4E-1 is distributed in the cytoplasm, but its function is not clear yet, because it cannot substitute the mammalian eIF4E in a rabbit reticulocyte in vitro translation system.  相似文献   

5.
The cap-binding complex elF4F is involved in ribosome recruitment during the initiation phase of translation and is composed of three subunits: elF4E, -4G, and -4A. The m7GpppN cap-binding subunit eIF4E binds the N-terminal region of eIF4G, which in turn contacts eIF4A through its central and C-terminal regions. We have previously shown, through a tethered-function approach in transfected HeLa cells, that the binding of eIF4G to an mRNA is sufficient to drive productive translation (De Gregorio et al., EMBO J, 1999, 18:4865-4874). Here we exploit this approach to assess which of the other subunits of elF4F can exert this function. eIF4AI or mutant forms of eIF4E were fused to the RNA-binding domain of the lambda phage antiterminator protein N to generate the chimeric proteins lambda4A, lambda4E-102 (abolished cap binding), and lambda4E-73-102 (impaired binding to both, the cap and eIF4G). The fusion proteins were directed to a bicistronic reporter mRNA by means of interaction with a specific lambda-N binding site (boxB) in the intercistronic space. We show that lambda4E-102, but neither the double mutant lambda4E-73-102 nor lambda4A, suffices to promote translation of the downstream gene in this assay. Coimmunoprecipitation analyses confirmed that all lambda-fusion proteins are capable of interacting with the appropriate endogenous eIF4F subunits. These results reveal that eIF4E, as well as eIF4G, can drive ribosome recruitment independent of a physical link to the cap structure. In spite of its interaction with endogenous eIF4G, lambda4A does not display this property. eIF4A thus appears to supply an essential auxiliary function to eIF4F that may require its ability to cycle into and out of this complex.  相似文献   

6.
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.  相似文献   

7.
Joshi B  Robalino J  Schott EJ  Jagus R 《BioTechniques》2002,33(2):392-3, 395-6, 398 passim
Evidence from several laboratories and sequencing projects has revealed that many eukaryotes contain multiple proteins related in sequence to the human mRNA-cap binding translation initiation factor 4E (eIF4E-1). Although some have been shown to bind cap-analogues, whether all eIF4E-family members function as translation initiation factors is unclear Furthermore, the existence of proteins related to eIF4E complicates the identification of the translation factor by sequence-based approaches. Methods to assess the functionality of eIF4E are limited. The most informative, single assay to identify proteins with eIF4E-activity is that of rescue of the lethal disruption of the single Saccharomyces cerevisiae eIF4E gene. We have developed a simplified yeast eIF4E "knockout-and-rescue" system, the characteristics of which are (i) a haploid system that obviates the needfor a "plasmid shuffle", (ii) a simple G418-based selection for yeast lacking a chromosomal eIF4E gene, and (iii) a glucose-based selection to deplete the strain of a human eIF4E-1 substitute and to assess the eIF4E-activity of an untested elF4E-family member In this form, the yeast eIF4E knockout-and-rescue system becomes a tool available to any laboratory experienced in the selection of microbial strains with antibiotics and standard media for the identification and isolation of cDNAs encoding proteins with eIF4E-activity.  相似文献   

8.
GTP hydrolysis occurs at several specific stages during the initiation, elongation, and termination stages of mRNA translation. However, it is unclear how GTP hydrolysis occurs; it has previously been suggested to involve a GTPase active center in the ribosome, although proof for this is lacking. Alternatively, it could involve the translation factors themselves, e.g., be similar to the situation for small G in which the GTPase active site involves arginine residues contributed by a further protein termed a GTPase-activator protein (GAP). During translation initiation in eukaryotes, initiation factor eIF5 is required for hydrolysis of GTP bound to eIF2 (the protein which brings the initiator Met-tRNA(i) to the 40S subunit). Here we show that eIF5 displays the hallmarks of a classical GAP (e.g., RasGAP). Firstly, its interaction with eIF2 is enhanced by AlF(4)(-). Secondly, eIF5 possesses a conserved arginine (Arg15) which, like the "arginine fingers" of classical GAPs, is flanked by hydrophobic residues. Mutation of Arg15 to methionine abolishes the ability of eIF5 either to stimulate GTP hydrolysis or to support mRNA translation in vitro. Mutation studies suggest that a second conserved arginine (Arg48) also contributes to the GTPase active site of the eIF2.eIF5 complex. Our data thus show that eIF5 behaves as a classical GAP and that GTP hydrolysis during translation involves proteins extrinsic to the ribosome. Indeed, inspection of their sequences suggests that other translation factors may also act as GAPs.  相似文献   

9.
Khan MA  Goss DJ 《Biochemistry》2005,44(11):4510-4516
Previous kinetic binding studies of wheat germ protein synthesis eukaryotic translational initiation factor eIFiso4F and its subunit, eIFiso4E, with m(7)GTP and mRNA analogues indicated that binding occurred by a two-step process with the first step occurring at a rate close to the diffusion-controlled rate [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The kinetic effects of eIF4B, PABP, and wheat germ eIFiso4F with two mRNA cap analogues and the temperature dependence of this reaction were measured and compared. The Arrhenius activation energies for binding of the two mRNA cap analogues, Ant-m(7)GTP and m(7)GpppG, were significantly different. Fluorescence stopped-flow studies of the eIFiso4F.eIF4B protein complex with two m(7)G cap analogues show a concentration-independent conformational change. The rate of this conformational change was approximately 2.4-fold faster for the eIFiso4F.eIF4B complex compared with our previous studies of eIFiso4F [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The dissociation rates were 3.7- and 5.4-fold slower for eIFiso4F.Ant-m(7)GTP and eIFiso4F.m(7)GpppG, respectively, in the presence of eIF4B and PABP. These studies show that eIF4B and PABP enhance the interaction with the cap and probably are involved in protein-protein interactions as well. The temperature dependence of the cap binding reaction was markedly reduced in the presence of either eIF4B or PABP. However, when both eIF4B and PABP were present, not only was the energy barrier reduced but the binding rate was faster. Since cap binding is thought to be the rate-limiting step in protein synthesis, these two proteins may perform a critical function in regulation of the overall protein synthesis efficiency. This suggests that the presence of both proteins leads to a rapid, stable complex, which serves as a scaffold for further initiation complex formation.  相似文献   

10.
In eukaryotic cells subjected to environmental stress, untranslated mRNA accumulates in discrete cytoplasmic foci that have been termed stress granules. Recent studies have shown that in addition to mRNA, stress granules also contain 40S ribosomal subunits and various translation initiation factors, including the mRNA binding proteins eIF4E and eIF4G. However, eIF2, the protein that transfers initiator methionyl-tRNA(i) (Met-tRNA(i)) to the 40S ribosomal subunit, has not been detected in stress granules. This result is surprising because the eIF2. GTP. Met-tRNA(i) complex is thought to bind to the 40S ribosomal subunit before the eIF4G. eIF4E. mRNA complex. In the present study, we show in both NIH-3T3 cells and mouse embryo fibroblasts that stress granules contain not only eIF2 but also the guanine nucleotide exchange factor for eIF2, eIF2B. Moreover, we show that phosphorylation of the alpha-subunit of eIF2 is necessary and sufficient for stress granule formation during the unfolded protein response. Finally, we also show that stress granules contain many, if not all, of the components of the 48S preinitiation complex, but not 60S ribosomal subunits, suggesting that they represent stalled translation initiation complexes.  相似文献   

11.
12.
Weak binding affinity of human 4EHP for mRNA cap analogs   总被引:1,自引:0,他引:1       下载免费PDF全文
Ribosome recruitment to the majority of eukaryotic mRNAs is facilitated by the interaction of the cap binding protein, eIF4E, with the mRNA 5' cap structure. eIF4E stimulates translation through its interaction with a scaffolding protein, eIF4G, which helps to recruit the ribosome. Metazoans also contain a homolog of eIF4E, termed 4EHP, which binds the cap structure, but not eIF4G, and thus cannot stimulate translation, but it instead inhibits the translation of only one known, and possibly subset mRNAs. To understand why 4EHP does not inhibit general translation, we studied the binding affinity of 4EHP for cap analogs using two methods: fluorescence titration and stopped-flow measurements. We show that 4EHP binds cap analogs m(7)GpppG and m(7)GTP with 30 and 100 lower affinity than eIF4E. Thus, 4EHP cannot compete with eIF4E for binding to the cap structure of most mRNAs.  相似文献   

13.
In eukaryotes, exposure to stress conditions causes a shift from cap-dependent to cap-independent translation. In trypanosomatids, environmental switches are the driving force of a developmental program of gene expression, but it is yet unclear how their translation machinery copes with their constantly changing environment. Trypanosomatids have a unique cap structure (cap-4) and encode four highly diverged paralogs of the cap-binding protein, eIF4E; none were found to genetically complement a yeast mutant failing to express eIF4E. Here we show that in promastigotes, a typical cap-binding complex is anchored through LeishIF4E-4, which associates with components of the cap-binding pre-initiation complex. In axenic amastigotes, expression of LeishIF4E-4 decreases and the protein does not bind the cap, whereas LeishIF4E-1 maintains its expression level and associates with the cap structure and with translation initiation factors. However, LeishIF4E-1 does not interact with eIF4G-like proteins in both life stages, excluding its involvement in cap-dependent translation. Using pull-down assays and mass-spectrometry, we identified a novel, non-conserved 4E-Interacting Protein (Leish4E-IP), which binds to LeishIF4E-1 in promastigotes, but not in amastigotes. Yeast two-hybrid and NMR spectroscopy confirmed the specificity of this interaction. We propose that Leish4E-IP is a translation regulator that is involved in switching between cap-dependent and alternative translation pathways.  相似文献   

14.
15.
Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. eIF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. eIF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of eIF4E for translation, a drastic knockdown of eIF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in eIF4E-knockdown cells. Hypophosphorylated 4E-BP1, which binds to eIF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of eIF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.  相似文献   

16.
Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5′-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors. Here, we report the discovery of Mextli (Mxt), a novel Drosophila melanogaster 4E-BP that in sharp contrast to other 4E-BPs, has a modular structure, binds RNA, eIF3, and several eIF4Es, and promotes translation. Mxt is expressed at high levels in ovarian germ line stem cells (GSCs) and early-stage cystocytes, as is eIF4E-1, and we demonstrate the two proteins interact in these cells. Phenotypic analysis of mxt mutants indicates a role for Mxt in germ line stem cell (GSC) maintenance and in early embryogenesis. Our results support the idea that Mxt, like eIF4G, coordinates the assembly of translation initiation complexes, rendering Mxt the first example of evolutionary convergence of eIF4G function.  相似文献   

17.
Gene expression is translationally regulated during many cellular and developmental processes. Translation can be modulated by affecting the recruitment of mRNAs to the ribosome, which involves recognition of the 5' cap structure by the cap-binding protein eIF4E. Drosophila has several genes encoding eIF4E-related proteins, but the biological role of most of them remains unknown. Here, we report that Drosophila eIF4E-3 is required specifically during spermatogenesis. Males lacking eIF4E-3 are sterile, showing defects in meiotic chromosome segregation, cytokinesis, nuclear shaping and individualization. We show that eIF4E-3 physically interacts with both eIF4G and eIF4G-2, the latter being a factor crucial for spermatocyte meiosis. In eIF4E-3 mutant testes, many proteins are present at different levels than in wild type, suggesting widespread effects on translation. Our results imply that eIF4E-3 forms specific eIF4F complexes that are essential for spermatogenesis.  相似文献   

18.
The eukaryotic translational initiation factor 4G (eIF4G) interacts with the cap-binding protein eIF4E through a consensus binding motif, Y(X)4LΦ (where X is any amino acid and Φ is a hydrophobic residue). 4E binding proteins (4E-BPs), which also contain a Y(X)4LΦ motif, regulate the eIF4E/eIF4G interaction. The non- or minimally-phosphorylated form of 4E-BP1 binds eIF4E, preventing eIF4E from interacting with eIF4G, thus inhibiting translation initiation. 4EGI-1, a small molecule inhibitor of the eIF4E/eIF4G interaction that is under investigation as a novel anti-cancer drug, has a dual activity; it disrupts the eIF4E/eIF4G interaction and stabilizes the binding of 4E-BP1 to eIF4E. Here, we report the complete backbone NMR resonance assignment of an unliganded 4E-BP1 fragment (4E-BP144–87). We also report the near complete backbone assignment of the same fragment in complex to eIF4E/m7GTP (excluding the assignment of the last C-terminus residue, D87). The chemical shift data constitute a prerequisite to understanding the mechanism of action of translation initiation inhibitors, including 4EGI-1, that modulate the eIF4E/4E-BP1 interaction.  相似文献   

19.
CPEB (cytoplasmic polyadenylation element-binding protein) is an important regulator of translation in oocytes and neurons. Although previous studies of CPEB in late Xenopus oocytes involve the eIF4E-binding protein maskin as the key factor for the repression of maternal mRNA, a second mechanism must exist, since maskin is absent earlier in oogenesis. Using co-immunoprecipitation and gel filtration assays, we show that CPEB specifically interacts, via protein/protein interactions, with the RNA helicase Xp54, the RNA-binding proteins P100(Pat1) and RAP55, the eIF4E-binding protein 4E-T, and an eIF4E protein. Remarkably, these CPEB complex proteins have been characterized, in one or more organism, as P-body, maternal, or neuronal granule components. We do not detect interactions with eIF4E1a, the canonical cap-binding factor, eIF4G, or eIF4A or with proteins expressed late in oogenesis, including maskin, PARN, and 4E-BP1. The eIF4E protein was identified as eIF4E1b, a close homolog of eIF4E1a, whose expression is restricted to oocytes and early embryos. Although eIF4E1b possesses all residues required for cap and eIF4G binding, it binds m(7)GTP weakly, and in pull-down assays, rather than binding eIF4G, it binds 4E-T, in a manner independent of the consensus eIF4E-binding site, YSKEELL. Wild type and Y-A mutant 4E-T (which binds eIF4E1b but not eIF4E1a), when tethered to a reporter mRNA, represses its translation in a cap-dependent manner, and injection of eIF4E1b antibody accelerates meiotic maturation. Altogether, our data suggest that CPEB, partnered with several highly conserved RNA-binding partners, inhibits protein synthesis in oocytes using a novel pairing of 4E-T and eIF4E1b.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号