首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shorter analogues of a continuous epitope of hepatitis A virus, VP3(110-121) peptide, failed to react with convalescent sera, indicating the importance of the entire peptide in the epitope structure. To better understand the influence of the structural properties of this 12-mer peptide epitope on its biological activity, the interaction of smaller peptide analogues with phospholipid biomembrane models was investigated by a combination of spectroscopic and biophysical techniques. In this article we describe our findings concerning the surface activity and the interaction of peptides with simple mono- and bilayer membranes composed of a zwitterionic phospholipid (dipalmitoyl phosphatidylcholine, DPPC), an anionic phospholipid (dipalmitoyl phosphatidylglicerol, DPPG), or a DPPC/DPPG mixture. The results indicate that the net negative charge of the peptide is in some way responsible of the specific interactions between VP3(110-121) and membrane phospholipids, and necessary to induce beta-type conformations upon vesicle interaction.  相似文献   

2.
The surface properties at the air/water interface and the interaction of branched chain polymeric polypeptides with a general formula poly[Lys-(DL -Alam-X1)], where X = Π (AK), Ser (SAK), or Glu (EAK), with phospholipids were investigated. Polylysine derivatives with polycationic (SAK, AK) or amphoteric (EAK) were capable to spread and form stable monomolecular layers. The stability of monolayers at the air/water interface was dependent on the side-chain terminal amino acid residue of polymers and can be described by SAK < AK < EAK order. The area per amino acid residue values calculated from compression isotherms were in the same range as compared to those of linear poly-α-amino acids and proteins. Moreover, these polymers interact with phospholipid monomolecular layers composed of dipalmitoyl phosphatidyl choline (DPPC) or DPPC/PG (PG: phosphatidyl glycerol; 95/5, mol/mol). Data obtained from compression isotherms of phospholipids spread on aqueous polymer solutions at different initial surface pressure indicated that insertion into lipid monolayers for SAK or AK is more pronounced than for EAK. The interaction between branched polypeptides and phospholipid membranes was further investigated using lipid bilayers with DPPC/PG and fluorescent probes located either at the polar surface [1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) sodium anilino naphthalene sulfonate (ANS)] or within the hydrophobic core (DPH) of the liposome. Changes in fluorescence intensity and in polarization were observed when TMA-DPH or ANS, but not DPH were used. Comparative data also indicate that all three polymers interact only with the outer surface of the bilayer, but even the most marked penetration of polycationic polypeptide (SAK) did not result in alteration of the ordered state of the alkyl chains in the bilayer. Taken together, data obtained from mono- or bilayer experiments suggest that the interaction between branched polymers and phospholipids are highly dependent on the charge properties (Ser vs Glu) and on the identity (Ser vs Ala) of side-chain terminating amino acids. The binding of polymers to the model membranes could be mainly driven by electrostatic forces, but the significant role of hydrophilic properties in case of SAK cannot be excluded. © 1998 John Wiley & Sons, Inc. Biopoly 46: 169–179, 1998  相似文献   

3.
Nagy IB  Majer Z  Hudecz F 《Biopolymers》2001,58(2):152-164
This report provides a detailed analysis on the influence of phosholipid bilayers on the conformation of poly[Lys(X(i)-DL-Ala(m))] (XAK, where X = Ser, Orn, Glu, or AcGlu) type branched polypeptides and their peptide conjugates. CD spectra of polycationic (SAK, OAK), amphoteric (EAK), or polyanionic (Ac-EAK) polylysine derivatives were recorded in 0.25M acetate buffer at pH 7.4 as well as in the presence of DPPC or DPPC/PG (95/5, 80/20 mol/mol) liposomes. Based on these data, two groups of polypeptides are described. Group one contains polypeptides with significantly ordered conformation even in buffer solution (SAK, AcEAK), which is essentially not altered by phospholipids. Group two, branched polypeptides (OAK, EAK), with only partially ordered conformation in aqueous solution in the presence of phospholipid bilayers with high PG content, could adopt more (EAK) or less (OAK) ordered alpha-helical structure depending on their charge properties. In addition, we report on the synthesis of two new sets of oligopeptide-branched polypeptide conjugates. Studies with selected conjugates suggest that these compounds are highly ordered in buffer solution almost regardless from the helix-forming ability of the carrier (AK, SAK, EAK) and from the hydrophilic/hydrophobic character of peptides attached (AVKDEL vs FWRGDLVFDFQV). Addition of phospholipid bilayers with different composition essentially had no modifying effect on conformation of conjugates. From this we can conclude that the covalently coupled oligopeptides has a predominant effect of the conformational properties of conjugates.  相似文献   

4.
5.
The effects of neuraminidase treatment on the membrane surface charge density and/or membrane potential of the porcine intestinal brush-border membrane vesicles were studied by using three fluorescent dyes, 1,6-diphenyl-1,3,5-hexatriene (DPH), 1-anilino-8-naphthalene sulfonate (ANS), and 3,3'-dipropyl-2,2'-thiadicarbocyanine iodide (DiS-C3(5]. The results of quenching studies of DPH-labeled membranes using cationic (T1+) and anionic (I-) quenchers suggested an increase of negative charge on the membrane surface by desialylation upon neuraminidase treatment. This interpretation was further supported by a decrease of ANS-binding affinity of the membranes after treatment with the enzyme. In addition, the degree of valinomycin-induced fluorescence change of DiS-C3(5)-probed membranes in the presence of various concentrations of KCl was reduced by treatment of the membranes with neuraminidase. This suggests that penetration of the dye molecules into the vesicle interior is facilitated by the treatment. The membrane potentials estimated from the null point of valinomycin-induced changes in the DiS-C3(5) fluorescence of the control and neuraminidase-treated membranes were -25 to -29.7 and -40 to -48.8 mV, respectively. From these results, it is suggested that the membrane surface charge density and/or membrane potential of the intestinal brush-border membranes are susceptible to modification of carbohydrate moieties on the membrane surface by neuraminidase treatment.  相似文献   

6.
The conjugate of acid labile cis-aconityl-daunomycin (cAD) with branched chain polypeptide, poly[Lys(Glui-DL-Alam)] (EAK) was very effective against L1210 leukemia in mice. However, Dau attached to a polycationic polypeptide, poly[Lys(Seri-DL-Alam)] (SAK) exhibited no in vivo antitumor effect. In order to understand this difference we have performed comparative in vitro studies to dissect properties related to interaction with the whole body (e.g., biodistribution) from those present at cellular or even molecular level. We report here (a) the kinetics of acid-induced Dau liberation, (b) interaction with DPPC phospholipid bilayer, (c) in vitro cytotoxic effect on different tumor cells, and (d) intracellular distribution in HL-60 cells of polycationic (cAD-SAK) and amphoteic (cAD-EAK) conjugates. Fluorescence properties of the two conjugates are also reported. Our findings demonstrate that the kinetics of the drug release, intracellular distribution and in vitro cytotoxic effect are rather similar, while the effect on DPPC phospholipid bilayer and fluorescence properties of the two conjugates are not the same. We also found that the in vitro cytotoxicity is cell line dependent. These observations suggest that the structure of the polypeptide carrier could have marked influence on drug uptake related events.  相似文献   

7.
The effect of phospholipid liposomes and surfactant micelles on the rate of nitric oxide release from zwitterionic diazeniumdiolates, R1R2N[N(O)NO]-, with significant hydrophobic structure, has been explored. The acid-catalyzed dissociation of NO has been examined in phosphate-buffered solutions of sodium dodecylsulfate (SDS) micelles and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-[phospho-(1-glycerol)] sodium salt (DPPG) phospholipid liposomes. The reaction behavior of dibenzylamine-, monobenzylamine-, and dibutylamine-derived substrates [1]: R1 = C6H5CH2, R2 = C6H5CH2 NH2+(CH2)2, 2: R1 = C6H5CH2, R2 = NH3+(CH2)2, and 3: R1 = n-butyl, R2 = n-butyl-NH2+(CH2)6] has been compared with that of SPER/NO, 4: R1 = H2N(CH2)3, R2 = H2N(CH2) 3NH2+(CH2)4]. Catalysis of NO release is observed in both micellar and liposome media. Hydrophobic interactions contribute to micellar binding for 1-3 and appear to be the main factor facilitating catalysis by charge neutral DPPC liposomes. Binding constants for the association of 1 and 3 with SDS micelles were 3-fold larger than those previously obtained with comparable zwitterionic substrates lacking their hydrophobic structure. Anionic DPPG liposomes were much more effective in catalyzing NO release than either DPPC liposomes or SDS micelles. DPPG liposomes (at 10 mM total lipid) induced a 30-fold increase in the NO dissociation rate of SPER/NO compared to 12- and 14-fold increases in that of 1 and 3.  相似文献   

8.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

9.
Wenz JJ  Barrantes FJ 《Biochemistry》2005,44(1):398-410
Purified nicotinic acetylcholine receptor (AChR) protein was reconstituted into synthetic lipid membranes having known effects on receptor function in the presence and absence of cholesterol (Chol). The phase behavior of a lipid system (DPPC/DOPC) possessing a known lipid phase profile and favoring nonfunctional, desensitized AChR was compared with that of a lipid system (POPA/POPC) containing the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the AChR. Fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and AChR intrinsic fluorescence by a nitroxide spin-labeled phospholipid showed that the AChR diminishes the degree of DPH quenching and promotes DPPC lateral segregation into an ordered lipid domain, an effect that was potentiated by Chol. Fluorescence anisotropy of the probe DPH increased in the presence of AChR or Chol and also made apparent shifts to higher values in the transition temperature of the lipid system in the presence of Chol and/or AChR. The values were highest when both Chol and AChR were present, further reinforcing the view that their effect on lipid segregation is additive. These results can be accounted for by the increase in the size of quencher-free, ordered lipid domains induced by AChR and/or Chol. Pyrene phosphatidylcholine (PyPC) excimer (E) formation was strongly reduced owing to the restricted diffusion of the probe induced by the AChR protein. The analysis of Forster energy transfer (FRET) from the protein to DPH further indicates that AChR partitions preferentially into these ordered lipid microdomains, enriched in saturated lipid (DPPC or POPA), which segregate from liquid phase-enriched DOPC or POPC domains. Taken together, the results suggest that the AChR organizes its immediate microenvironment in the form of microdomains with higher lateral packing density and rigidity. The relative size of such microdomains depends not only on the phospholipid polar headgroup and fatty acyl chain saturation but also on AChR protein-lipid interactions. Additional evidence suggests a possible competition between Chol and POPA for the same binding sites on the AChR protein.  相似文献   

10.
We have investigated the reason for the sensitivity of the fluorescence excited-state lifetime of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its phospholipid derivatives, 1-palmitoyl-2-[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl)carbonyl)-3-sn-phosphatidylcholine (DPHpPC) and 1-palmitoyl-2-[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl)carbonyl)-3-sn-phosphatidic acid (DPHpPA), to the concentration of these probes in dipalmitoylphosphatidylcholine (DPPC) multilamellar membranes (Barrow, D. A., and B. R. Lentz, 1985. Biophys. J. 48:221-234; Parente, R. A., and B. R. Lentz. 1985. Biochemistry. 24:6178-6185). We have interpreted self-quenching data, excitation and emission spectra, and phase and modulation lifetime data in terms of a model that envisions dimerization of these probes in a membrane bilayer. It is proposed that dimerization alters the symmetry of the DPH excited state so as to allow more rapid decay via the normally symmetry-disallowed route from the 1Ag* state. Global analysis of fluorescence phase shift and modulation ratio data for DPHpPC in terms of the dimerization model provided a good fit of these data as a function of both modulation frequency and probe concentration. Global analysis of a similar set of data for the charged phosphatide DPHpPA predicted that this probe was much less prone to dimerize than was the uncharged DPHpPC. This physically reasonable result provides support for the assumptions made in the development of our model. We conclude that the dimerization model allows rationalization of many of the anomalous photophysical properties of DPH and its derivatives in membranes.  相似文献   

11.
A new approach to study phospholipase A2 mediated hydrolysis of phospholipid vesicles, using 13C NMR spectroscopy, is described. [13C]Carbonyl-enriched dipalmitoylphosphatidylcholine (DPPC) incorporated into nonhydrolyzable ether-linked phospholipid bilayers was hydrolyzed by phospholipase A2 (Crotalus adamanteus). The 13C-labeled carboxyl/carbonyl peaks from the products [lyso-1-palmitoylphosphatidylcholine (LPPC) and palmitic acid (PA)] were well separated from the substrate carbonyl peaks. The progress of the reaction was monitored from decreases in the DPPC carbonyl peak intensities and increases in the product peak intensities. DPPC peak intensity changes showed that only the sn-2 ester bond of DPPC on the outer monolayer of the vesicle was hydrolyzed. Most, but not all, of the DPPC in the outer monolayer was hydrolyzed after 18-24 h. There was no movement of phospholipid from the inner to the outer monolayer over the long time periods (18-24 h) examined. On the basis of chemical shift measurements of the product carbonyl peaks, it was determined that, at all times during the hydrolysis reaction, the LPPC was present only in the outer monolayer of the bilayer and the PA was bound to the bilayer and was approximately 50% ionized at pH approximately 7.2. Bovine serum albumin extracted most of the LPPC and PA from the product vesicles, as revealed by chemical shift changes after addition of the protein. The capability of 13C NMR spectroscopy to elucidate key structural features without the use of either shift reagents or separation procedures which may alter the reaction equilibrium makes it an attractive method to study this enzymatic process.  相似文献   

12.
Summary Treatment of resident peritoneal macrophages of rats with small unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC SUV) potentiated their activation for tumor cell lysis by endotoxins. The fluorescence polarization of diphenylhexatriene (DPH) embedded in rough endoplasmic reticulum membranes isolated from DPPC SUV-treated macrophages was enhanced. The average fluorescence lifetime of DPH and the rotational correlation time deduced from anisotropy decay were unchanged, whereas the residual anisotropy and hence the order parameter were increased. The measurement of the fluorescence anisotropy of DPH as a function of the temperature showed a phase transition. No phase transition was observed in the rough endoplasmic reticulum membranes of macrophages either treated or not treated with cholesterol/DPPC SUV (1/1; mol/mol). The synergistic effect of DPPC SUV on the tumoricidal activity of macrophages induced by endotoxins appears to be correlated with the changes in the properties of the rough endoplasmic reticulum membranes. Both effects were transient; they had the same kinetics of induction and reversion, and they were both inhibited by cholesterol.  相似文献   

13.
The effects of the organophosphorous insecticide fenitrothion (phosphorothioic acid, O,O-dimethyl O-(3-methyl-4-nitrophenyl) ester; FS) on the physical state of pure dipalmitoyl (DPPC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) membranes were investigated. FS lowers the phase transition temperature of DPPC. It has no large effects on the DPPC gel phase, but it increases the order of the liquid-crystalline state of DPPC and POPC. FS also decreases 1,6-diphenyl-1,3,5-hexatriene (DPH) lifetime (tau) in the DPPC and POPC liquid-crystalline states. Since a direct quenching of DPH emission by FS was ruled out, tau shortening is assigned to an increased water penetration in the bilayer. The effect of FS is different from most perturbing agents for which an increased order is accompanied by a higher tau. Furthermore, quenching of DPH by KI was increased by FS in POPC liposomes indicating an increased accessibility of the quencher to the hydrophobic core where DPH distributes. The effect of FS on dipole relaxation at the hydrophilic-hydrophobic interface of POPC bilayers was studied with 2-dimethylamino-6-lauroylnaphthalene (Laurdan). FS produces a decrease in Laurdan tau and a narrowing of its emission band. FS significantly increases the generalized polarization values at both emission band ends. These results indicate that FS may allow the coexistence of microdomains that have different physical properties.  相似文献   

14.
The effect of chronic administration of lithium salts on the lipid composition and physical properties of the synaptosomal plasma membrane was examined in rat brain. The effect of lithium treatment has been studied on the fluorescence polarization of synaptosomal plasma membrane and artificial lipid vesicles and on the lipid composition of the membranes. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from lithium-treated animals. Altered DPH polarization was due to a decrease in the order parameter of the probe. The lithium-treatment also changed the fluorescence of 1-anilino-8-naphthalene sulfonate (ANS), a probe that binds to the polar head group of the phospholipids and to proteins on the membrane surface. Synaptic plasma membranes from treated rats presented no significant changes on the cholesterol-to-phospholipid ratio, although the phospholipid class distribution was altered and the membrane phospholipid unsaturation increased. In summary, the neural plasma membranes became disorder after chronic lithium administration at therapeutic levels. This structural change may be due to changes in plasma membrane phospholipid distribution and to the degree of unsaturation of phospholipid fatty acids.  相似文献   

15.
Phosphatidylserine (PS) extracted from pig brain and synthetic dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were used to make DPPC/DMPC and DPPC/PS large unilamellar liposomes with a diameter of approximately 1 microm. Chlorpromazine-HCl (CPZ), an amphipathic cationic psychotropic drug of the phenothiazine group, is known to partition into lipid bilayer membranes of liposomes with partition coefficients depending on the acyl chain length and to alter the bilayer structure in a manner depending on the phospholipid headgroups. The effects of adding CPZ to these membranes were studied by differential scanning calorimetry and proton cross polarization solid state magic angle spinning (13)C-nuclear magnetic resonance spectroscopy (CP-MAS-(13)C-NMR). CP-MAS-(13)C-NMR spectra of the DPPC (60%)/DMPC (40%) and the DPPC (54%)/DMPC (36%)/CPZ (10%) liposomes, show that CPZ has low or no interaction with the phospholipids of this neutral and densely packed bilayer. Conversely, the DPPC (54%)/PS (36%)/CPZ (10%) bilayer at 25 degrees C demonstrates interaction of CPZ with the phospholipid headgroups (PS). This CPZ interaction causes about 30% of the acyl chains to enter the gauche conformation with low or no CPZ interdigitation among the acyl chains at this temperature (25 degrees C). The DPPC (54%)/PS (36%)/CPZ (10%) bilayer at a sample temperature of 37 degrees C (T(C)=31.2 degrees C), shows CPZ interdigitation among the phospholipids as deduced from the finding that approximately 30% of the phospholipid acyl chains carbon resonances shift low-field by 5-15 ppm.  相似文献   

16.
The conjugate of acid labile cis-aconityl-daunomycin (cAD) with branched chain polypeptide, poly[Lys(Glui-DL-Alam)] (EAK) was very effective against L1210 leukemia in mice. However, Dau attached to a polycationic polypeptide, poly[Lys(Seri-DL-Alam)] (SAK) exhibited no in vivo antitumor effect. In order to understand this difference we have performed comparative in vitro studies to dissect properties related to interaction with the whole body (e.g., biodistribution) from those present at cellular or even molecular level. We report here (a) the kinetics of acid-induced Dau liberation, (b) interaction with DPPC phospholipid bilayer, (c) in vitro cytotoxic effect on different tumor cells, and (d) intracellular distribution in HL-60 cells of polycationic (cAD-SAK) and amphoteic (cAD-EAK) conjugates. Fluorescence properties of the two conjugates are also reported. Our findings demonstrate that the kinetics of the drug release, intracellular distribution and in vitro cytotoxic effect are rather similar, while the effect on DPPC phospholipid bilayer and fluorescence properties of the two conjugates are not the same. We also found that the in vitro cytotoxicity is cell line dependent. These observations suggest that the structure of the polypeptide carrier could have marked influence on drug uptake related events.  相似文献   

17.
The membrane-interacting properties of a potential epitope of GB virus C/hepatitis G virus located at the region (99-118) of the E2 structural protein were investigated using several fluorescence techniques. SUV of DMPC:DPPC (1:1) or DMPG:DPPC (1:1) zwitterionic and anionic mixtures, respectively, were used as model membranes. FRET with NBD-PE as energy donor and Rho-PE as energy acceptor-labelled SUV indicated that the peptide was able to fuse both zwitterionic and anionic SUVs, the latter requiring lower peptide concentrations. However, the peptide increased the steady-state anisotropy of DPH embedded in the hydrophobic centre of the membrane with zwitterionic headgroups and to a lesser extent in anionic bilayers, suggesting that charge-charge interactions are not required for membrane interactions and also confirming the FRET results. No changes in anisotropy were observed with the probe TMA-DPH located at the surface of the bilayer. Finally, analysis of the intrinsic emission fluorescence of the tryptophan residue, upon incubation with SUV, showed a blue shift in the presence of anionic bilayers, both below and above the main transition temperature (T(m)) (gel to liquid-crystalline state) and, to a lesser extent, with the zwitterionic model membrane.  相似文献   

18.
The kinetics of the main phase transition in dipalmytoylphosphatidylcholine (DPPC) vesicles have been investigated using our iodine laser-Tjump technique with fluorescence detection. A set of three fluorescent probes has been used to sense different parts of the bilayer hydrocarbon chain region. The well established membrane probes DPH and TMADPH as well as DPHPC, a labelled DPPC molecule. We report three relaxation signals in the s and ms time range, which are detected with all three probes. This result supports our model of the main phase transition in DPPC vesicles.Abbreviations DMPC Dimyristoylphosphatidylcholine - DPPC Dipalmytoylphosphatidylcholine - DPH 1,6-Diphenylhexa-1,3,5-triene - TMADPH 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene - DPHPC Diphenylhexatriene-phosphatidylcholine - Tm Temperature of the main phase transition  相似文献   

19.
The effect(s) of bovine brain ganglioside-GM1 on the order of phosphatidylcholine-cholesterol membranes were studied using steady-state fluorescence polarization (FPZ) techniques with 1,6-diphenyl-1,3,5-hexatriene (DPH) as the membrane probe. In the absence of cholesterol, GM1 (30 mol%) increases both membrane order and the phase transition temperature of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) membranes. However, in the presence of cholesterol (0.3 or 0.5, cholesterol/phospholipid molar ratio), GM1 significantly decreases steady-state anisotropy (rs) at temperatures above the Tm for the particular phospholipid. This effect may, in part relate to a dilution of membrane cholesterol and is shared by bovine brain sphingomyelin (SM). GM1 (30 mol%) increases the order of 1-palmityl-2-oleyl-PC (POPC) membranes. However, in the presence of cholesterol (0.3 molar ratio) GM1 neither increases or decreases order. Thus, in cholesterol containing artificial membranes, the effect of GM1 depends on the phosphatidylcholine (PC) fatty acid composition and may not be evident from the effect of GM1 on pure PC membranes.  相似文献   

20.
F Reig  A Juvé  A Ortiz  P Sospedra  M A Alsina 《Luminescence》2005,20(4-5):326-330
A peptide sequence, stearoyl-GESIKVAVS(NH2), related to a laminin fragment, has been synthesized. Formation of aggregates was controlled by titrating a sodium anilinonaphthalene sulphonate (ANS) solution with peptide and recording fluorescence intensity increases. The results show that this system experiences a sudden increase in fluorescence at peptide concentrations around 2.5 x 10(-4) mol/L. The interaction of this hydrophobic peptide with DPPC vesicles has been studied using fluorescence techniques. Its influence on the microviscosity of bilayers was determined by studying polarization/temperature dependence for ANS and diphenyl hexatriene (DPH) fluorescent probes. With both markers the presence of peptide promotes a clear increase in anisotropy values. This indicates a rigidifying effect. Leakage studies carried out with liposomes loaded with carboxyfluorescein (CF) indicate a stabilizing effect of the peptide on bilayers, in agreement with results obtained with fluorescent probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号