首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We present the complete mitochondrial DNA sequence of Eupolyphaga sinensis. This closed circular molecule is 15553 bp long and consists of 37 genes that encode for 13 inner membrane proteins, 2 ribosomal RNAs and 22 transfer RNAs. The genome shares the gene order and orientation with previously known Blattaria mitochondrial genomes. All tRNAs could be folded into the typical cloverleaf secondary structure, but the tRNASer (AGN) appears to be missing the DHU arm. The A + T-rich region is 857 bp long and longer than other cockroaches. Based on the concatenated amino acid sequences of all protein coding genes of E. sinensis in conjunction with those 23 other arthropod sequences, we reconstruct the phylogenetic tree. Phylogenetic analyses shows that Blataria (including Isoptera) and the Mantodea are sister groups. Furthermore the relationship of the three basal clades of winged insects are different from the three previous hypotheses ((Ephemeroptera + Odonata) +Neoptera, Ephemeroptera + (Odonata + Neoptera), Odonata + (Ephemeroptera +Neoptera)). The Ephemeroptera (Parafronurus youi) clusters with the Plecoptera (Pteronarcys princes).  相似文献   

2.
We have determined the complete mitochondrial genome sequences of the codfishes Arctogadus glacialis and Boreogadus saida (Order Gadiformes, Family Gadidae). The 16,644 bp and 16,745 bp mtDNAs, respectively, contain the same set of 37 structural genes found in all vertebrates analyzed so far. The gene organization is conserved compared to other Gadidae species, but with one notable exception. B. saida contains heteroplasmic rearrangement-mediated duplications that include the origin of light-strand replication and nearby tRNA genes. Examination of the mitochondrial control region of A. glacialis, B. saida, and four additional representative Gadidae genera identified a highly variable domain containing tandem repeat motifs in A. glacialis. Mitogenomic phylogeny based on the complete mitochondrial genome sequence, the concatenated protein-coding genes, and the derived protein sequences strongly supports a sister taxa affiliation of A. glacialis and B. saida.  相似文献   

3.
4.
He CB  Wang J  Gao XG  Song WT  Li HJ  Li YF  Liu WD  Su H 《Molecular biology reports》2011,38(5):3401-3409
Veneridae is a diverse, commercially important, and cosmopolitan family. Here we present the complete mitochondrial genome of the hard clam Meretrix meretrix (Bivalvia: Veneridae). The entire mitochondrial genome (mitogenome) sequence of M. meretrix is 19,826 bp in length, and contains 37 genes including 12 protein-coding genes, 2 ribosomal RNAs, and 23 tRNAs. All genes are encoded on the heavy strand. In contrast to the typical animal mitochondrial genome, it lacks the protein-coding gene ATP8, and has only one copy of the tRNASer gene, but three duplications of the tRNAGln, which is the first report among the present molluscan mtDNAs. We observed that the gene arrangement between M. meretrix and M. petechialis is same except one more tRNAGln gene in M. meretrix., and the sequence similarity is as high as 99%, indicating that M. petechialis and M. meretrix could be treated as a junior synonym of M. meretrix. Maximum Likelihood and Bayeslan analysis of 12 concatenated protein-coding amino acid sequences place the Unionidae as a sister group to other bivalves, which reflects the general opinion that the Unionidae deverged very early in Bivalvia evolution.  相似文献   

5.
Wang C  Chen Q  Lu G  Xu J  Yang Q  Li S 《Gene》2008,424(1-2):96-101
Genome comparison has shed light on many fields of both basic and applied research, including the study of species phylogeny. Grass carp (Ctenopharyngodon idella) belongs to Cyprinidae, the largest freshwater fish family; but which subfamily it belongs to remains a controversial issue. In this study, the complete mitochondrial genome (mitogenome) sequence of grass carp was determined and phylogenetic analyses of all mitochondrial protein-coding genes and a nuclear gene (RAG 2) were conducted to explore the evolutionary relationship of grass carp with other cyprinid species. The mitogenome of grass carp is 16,609 bp in length. As with most other vertebrates, it contains the same gene order and an identical number of genes or regions, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes and one putative control region. Phylogenetic analyses using two different datasets (mitochondrial and nuclear) and three different computational algorithms (Bayesian, MP and ML) all revealed two distinct groups with high statistical support, indicating that Cyprininae and Leuciscinae are two separate, valid subfamilies. Importantly, our phylogenetic result provides strong molecular evidence in support of the placement of Ctenopharyngodon in Leuciscinae rather than in Cyprininae.  相似文献   

6.
The genetics and molecular biology of the commercially important Chinese spiny lobster, Panulirus stimpsoni are little known. Here, we present the complete mitochondrial genome sequence of P. stimpsoni, determined by the long polymerase chain reaction and primer walking sequencing method. The entire genome is 15,677 bp in length, encoding the standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The overall A + T content of the genome is 65.6%, lower than most malacostracan species. The gene order is consistent with the pancrustacean ground pattern. Several conserved elements were identified from P. stimpsoni control region, viz. one [TA(A)]n-block, two GA-blocks and three hairpin structures. However, the position of [TA(A)]n-block and number of hairpin structure are different from those in the congeneric P. japonicus and other decapods. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes do not support the monophyly of suborder Pleocyemata, which is in contrast to most morphological and molecular results. However, the position of Palinura and Astacidea is unstable, as represented by the basal or sister branches to other Reptantia species. P. stimpsoni, as the second species of Palinura with complete mitochondrial genome available, will provide important information on both genomics and conservation biology of the group.  相似文献   

7.
We determined the complete mitochondrial genome sequence of Rhigonema thysanophora, the first representative of Rhigonematomorpha, and used this sequence along with 57 other nematode species for phylogenetic analyses. The R. thysanophora mtDNA is 15 015 bp and identical to all other chromadorean nematode mtDNAs published to date in that it contains 36 genes (lacking atp8) encoded in the same direction. Phylogenetic analyses of nucleotide and amino acid sequence data for the 12 protein‐coding genes recovered Rhigonematomorpha as the sister group to the heterakoid species, Ascaridia columbae (Ascaridomorpha). The organization of R. thysanophora mtDNA resembles the most common pattern for the Rhabditomorpha+Ascaridomorpha+Diplogasteromorpha clade in gene order, but with some substantial gene rearrangements. This similarity in gene order is in agreement with the sequence‐based analyses that indicate a close relationship between Rhigonematomorpha and Rhabditomorpha+Ascaridomorpha+Diplogasteromorpha. These results are consistent with certain analyses of nuclear SSU rDNA for R. thysanophora and some earlier classification systems that asserted phylogenetic affinity between Rhigonematomorpha and Ascaridomorpha, but inconsistent with morphology‐based phylogenetic hypotheses that suggested a close (taxonomic) relationship between rhigonematomorphs and oxyuridomorphs (pinworms). These observations must be tempered by noting that few rhigonematomorph species have been sequenced and included in phylogenetic analyses, and preliminary studies based on SSU rDNA suggest the group is not monophyletic. Additional mitochondrial genome sequences of rhigonematids are needed to characterize their phylogenetic relationships within Chromadorea, and to increase understanding of mitochondrial genome evolution.  相似文献   

8.
The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) currently is one of the economically most destructive pest species of stone and pome fruits worldwide. Here we sequenced the complete mitochondrial genome of this pest. This genome is 15,776 bp long, with an A + T content of 81.24%, containing 37 typical animal mitochondrial genes and an A + T-rich region. All gene are arranged as hypothesized ancestral gene order of insects except for trnM, which was shuffled from 3′ downstream of trnQ to 5′ upstream of trnI. cox1 gene uses unusual CGA start codon, as that in all other sequenced lepidopteran mitochondrial genome. The secondary structures for the two rRNA genes were predicted. All helices typically present in insect mitochondrial rRNA genes are generated. A microsatellite sequence was inserted into the region of H2347 in rrnL in G. molesta and two other sequenced tortricid mitochondrial genomes, indicating that the insertion event in this helix might occurred anciently in family Tortricidae. All of the 22 typical animal tRNA genes have a typical cloverleaf structure except for trnS2, in which the D-stem pairings in the DHU arm are absent. An intergenic sequence is present between trnQ and nad2 as well as in other sequenced lepidopteran mitochondrial genomes, which was presumed to be a remnant of trnM gene and its boundary sequences after the duplication of trnM to the upstream of trnI in Lepidoptera. The A + T-rich region is 836 bp, containing six repeat sequences of “TTATTATTATTATTAAATA(G)TTT.”  相似文献   

9.
Ample studies have been conducted to investigate the population genetic structure of grass carp Ctenopharyngodon idella in the Yangtze River, China. However, samples from the upper reaches were not included. In this study, we collected samples from the entire river, including three locations in the upper reaches: Yibin, Banan and Yunyang, two locations in the middle reaches: Shishou and Ruichang and one location in the lower reaches: Hanjiang, and sequenced three mitochondrial coding genes (ND5, ND6 and Cytb) and one control region (i.e., the D-loop). Nineteen haplotypes were observed in grass carp of the Yangtze River through the analysis of combined sequence data sets (around 4428 bp). Haplotype diversity indices (0.6000 ∼ 0.9333) and nucleotide diversity indices (0.0002 ∼ 0.0020) demonstrated low genetic diversity in the Yangtze grass carp. The analysis of molecular variance and the fixation index (F ST = 0.0202) revealed insignificant genetic difference between samples from different reaches. Two monophyletic lineages of haplotypes were identified, with the lineage A experiencing potential expansion events. Along with previous findings, this study provides a better understanding of genetic diversity and variation of grass carp in the Yangtze River and will be served as an important baseline to evaluate the long-term impact of the Three Gorges Dam and other hydroelectric facilities on fish biodiversity.  相似文献   

10.
The complete nucleotide sequence of the mitogenome of Bombyx mandarina strain Qingzhou was determined. The circular genome is 15,717 bp long and has the typical gene organization and order of lepidopteran mitogenomes. All protein-coding sequences are initiated with a typical ATN codon, except the COI gene, which has a 4-bp TTAG putative initiator codon. Eleven of the 13 protein-coding gene have a complete termination codon (all TAA), but the remaining two genes terminate with incomplete codons. All transfer RNAs (tRNAs) have a clover-leaf structure typical of the mitochondrial tRNAs, and some of them have a mismatch in the four-stem-and-loop structure. The length of the A + T rich region of B. mandarina strain Qingzhou is 495 bp, shorter than that of B. mandarina strain Tsukuba (747 bp) but similar to that of Bombyx mori. Phylogenetic analysis based on the whole mitochondrial genome sequences of the available sequenced species (B. mori strains C-108, Aojuku, Backokjam, and Xiafang, B. mandarina strains Tsukuba, Ankang, and Qingzhou, and Antheraea pernyi) shows the origin of the domesticated silkmoth B. mori to be the Chinese B. mandarina. Nuclear mitochondrial pseudogene sequences were detected in the nuclear genome of B. mori with the MEGA BLAST search program. A phylogenetic analysis of these nuclear mitochondrial pseudogene sequences suggests that B. mori was domesticated independently in different areas and periods.  相似文献   

11.
We sequenced the complete mitochondrial genome (mitogenome) of the black‐tailed hornet, Vespa ducalis (Hymenoptera: Vespidae). The genome was 15,779‐bp long and contained typical sets of genes [13 protein‐coding genes (PCGs), 22 tRNAs, and 2 rRNAs]. The V. ducalis A + T‐rich region was 166‐bp long and was the shortest of all sequenced Vespoidea genomes, including Vespa. The genome was highly biased toward A/T nucleotides—80.1 % in the whole genome, 77.8 % in PCGs, 83.4–85.6 % in RNAs, and 92.8 % in the A + T‐rich region. These values are well within the typical range for genes and regions of Vespoidea mitogenomes. Start and stop codons in several Vespa species—including V. ducalis—were diversified, despite these species belonging to the same genus. In comparison with the ancestral mitogenomes, Vespa mitogenomes—including that of V. ducalis—showed substantial gene rearrangement; however, we detected no gene rearrangement among Vespa species. We conducted phylogenetic reconstruction based on concatenated sequences of 13 PCGs and two rRNAs (12,755 bp ) in available species of Vespoidea—21 species in six subfamilies in two families (Vespidae and Formicidae). The Bayesian inference and maximum likelihood (ML) methods revealed that each family formed strong monophyletic groups [Bayesian posterior probability (BPP) = 1; ML, 100 %]. Moreover, V. ducalis and V. mandarinia formed a strong sister group (BPP = 1; ML, 94 %).  相似文献   

12.
Adenylosuccinate lyase (ADSL) is a bifunctional enzyme acting in de novo purine synthesis and purine nucleotide recycling. In the present study, we have constructed a grass carp (Ctenopharyngodon idella) intestinal cDNA library that has over 2.3 × 105 primary clones. An expressed sequence tag (EST) of grass carp adenylosuccinate lyase (gcADSL) gene was screened from this library. Both 5′-RACE and 3′-RACE were carried out in order to obtain the complete cDNA sequence, which contains a 1,446 bp open reading frame encoding 482 amino acids about 54.552 kDa. The deduced amino acid sequence shares high homology with its vertebrate counterparts, which shares 94% similarity with zebrafish, 81% with African clawed frog as well as chicken, 77% with human and 76% with mouse. This gcADSL genomic sequence, consisted of 13 exons and 12 introns, is 8,557 bp in size. Real-time quantitative PCR analysis revealed that the highest expression level of gcADSL was detected in muscle and the lowest in gill. In western blotting analysis, His6-tagged gcADSL protein expressed in Escherichia coli could be recognized not only by an anti-His6-tag monoclonal antibody but also by an anti-human ADSL polyclonal antibody, indicating immunological crossreactivity occurs between grass carp and human ADSL protein. 1,082 bp 5′-flanking region sequence was cloned and analyzed.  相似文献   

13.
The complete nucleotide sequence of mitochondrial genome of the Great bustard (Otis tarda) was determined by using polymerase chain reaction (PCR) method. The genome is 16,849 bp in size, containing 13 protein-coding, 2 ribosomal and 22 transfer RNA genes. Sequences of the tRNA genes can be folded into canonical cloverleaf secondary structure except for tRNA-Cys and tRNA-Ser (AGY), which lose “DHU” arm. Sequence analysis showed that the O. tarda mitochondrial control region (mtCR) contained many elements in common with other avian mtCRs. A microsatellite repeat was found in the 3′-peripheral domain of the O. tarda mtCR. Based on the mitochondrial DNA sequences of 12S rRNA, 16S rRNA and tRNA-Val, a phylogenetic study of Gruiformes was performed. The result showed that Otididae was a sister group to “core Gruiformes” and Charadriiformes with strong support (97% posterior probability values) in Bayesian analysis. The taxonomic status of Rhynochetidae, Mesitornithidae, Pedionomidae and Turnicidae that traditionally belonged to Gruiformes was also discussed in this paper.  相似文献   

14.
Otter populations are declining throughout the world and most otter species are considered endangered. Molecular methods are suitable tools for population genetic research on endangered species. In the present study, we analyzed the complete mitochondrial genome (mitogenome) sequence of the Eurasian otter Lutra lutra. The mitochondrial DNA sequence of the Eurasian otter is 16,505 bp in length and consists of 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and a control region (CR). The CR sequence of otters from Europe and Asia showed nearly identical numbers and nucleotide sequences of minisatellites. Phylogenetic analysis of Mustelidae mitogenomes, including individual genes, revealed that Lutrinae and Mustelinae form a clade, and that L. lutra and Enhydra lutris are sister taxa within the Lutrinae. Phylogenetic analyses revealed that of the 13 mitochondrial protein-coding genes, ND5 is the most reliable marker for analysis of phylogenetic relationships within the Mustelidae.  相似文献   

15.
Similar morphological characters and little molecular data of Amphioctopus rex, A. neglectus and A. cf. ovulum resulted in their unknown phylogenetic statuses and equivocal relationships. In this study, the complete mitochondrial genomes of these three species collected in Chinese waters were sequenced and compared with each other to clarify the relationships among them. The lengths of the mitochondrial genomes varied from 15,646 bp to 15,814 bp, and the A + T content and GC skew for protein‐coding genes showed little variation. In contrast, both a dendrogram based on codon usage and the gene arrangements of the three octopuses showed that A. rex was more closely related to A. neglectus than to A. cf. ovulum. Five data sets and two methods (maximum likelihood and Bayesian inference) were utilized for the first time to explore the phylogenetic relationships among these three species in Octopodidae. The results indicated that a data set combining protein‐coding genes and RNA genes (PR) was optimal for analysing the relationships among 43 cephalopods. All of the phylogenetic trees divided the cephalopods into 10 taxa and supported the monophyly of Oegopsida, Myopsida, Sepiidae and Octopodidae. In this study, Idiosepiidae was classified as sister to Sepiolidae. Trees constructed using all data sets robustly supported the monophyly of the genus Amphioctopus. Notably, A. rex was more closely related to A. neglectus than to A. cf. ovulum, although these three species share the characteristic of violet rings on dark ocelli.  相似文献   

16.
Cichlid fishes have played an important role in evolutionary biology and aquaculture industry. Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and Mozambique tilapia (Oreochromis mossambicus), the useful models in studying evolutionary biology within Cichlid fishes, are also mainly cultured species in aquaculture with great economic importance. In this paper, the complete nucleotide sequence of the mitochondrial genome for O. niloticus and O. aureus were determined and phylogenetic analyses from mitochondrial protein-coding genes were conducted to explore their phylogenetic relationship within Cichlids. The mitogenome is 16,625 bp for O. niloticus and 16,628 bp for O. aureus, containing the same gene order and an identical number of genes or regions with the other Cichlid fishes, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes and one putative control region. Phylogenetic analyses using three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian method) show O. niloticus and O. mossambicus are closely related, and O. aureus has remotely phylogenetic relationship from above two fishes.  相似文献   

17.
Genus Lateolabrax consists of three species, Japanese sea bass Lateolabrax japonicus, spotted sea bass Lateolabrax maculatus and blackfin sea bass Lateolabrax latus. The complete mitochondrial DNA (mtDNA) of the three sea basses were amplified and sequenced to characterize and discuss their phylogenetic relationships. The length of mitogenomes was 16,593 bp, 16,479 bp and 16,600 bp, respectively, and all of them consisted of 13 protein-coding genes, 2 ribosomal RNA (rRNA), 22 transfer RNA (tRNA) and a control region, which are typical for mtDNA of vertebrate. Most genes were encoded on the H-strand, except for the ND6 and eight tRNA genes encoding on the L-strand. A significant variation among the three species was detected in length of the control region. Phylogenetic relationship among the three species was constructed based on the datasets, including the 12 protein-coding genes (except ND6 gene), 22 tRNA and 2 rRNA sequences. The results supported the sister taxon between L. japonicus and L. maculatus. The genetic resources reported here are useful for further studies in taxonomy and phylogeny of the three sea basses and related species.  相似文献   

18.
Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5' end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19-37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16-21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C-U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae.  相似文献   

19.
Mitochondrial genomes have recently become widely used in animal phylogeny, mainly to infer the relationships between vertebrates and other bilaterians. However, only 11 of 723 complete mitochondrial genomes available in the public databases are of early metazoans, including cnidarians (Anthozoa, mainly Scleractinia) and sponges. Although some cnidarians (Medusozoa) are known to possess atypical linear mitochondrial DNA, the anthozoan mitochondrial genome is circular and its organization is similar to that of other metazoans. Because the phylogenetic relationships among Anthozoa as well as their relation to other early metazoans still need to be clarified, we tested whether sequencing the complete mitochondrial genome of Savalia savaglia, an anthozoan belonging to the order Zoantharia (=Zoanthidea), could be useful to infer such relationships. Compared to other anthozoans, S. savaglia’s genome is unusually long (20,766 bp) due to the presence of several noncoding intergenic regions (3691 bp). The genome contains all 13 protein coding genes commonly found in metazoans, but like other Anthozoa it lacks most of the tRNAs. Phylogenetic analyses of S. savaglia mitochondrial sequences show Zoantharia branching closely to other Hexacorallia, either as a sister group to Actiniaria or as a sister group to Actiniaria and Scleractinia. The close relationships suggested between Zoantharia and Actiniaria are reinforced by strong similarities in their gene order and the presence of similar introns in the COI and ND5 genes. Our study suggests that mitochondrial genomes can be a source of potentially valuable information on the phylogeny of Hexacorallia and may provide new insights into the evolution of early metazoans. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Axel Meyer]  相似文献   

20.
The complete mitochondrial genomes of five tiger samples from three subspecies (P. t. sumatrae, P. t. altica, and P. t. tigris) were successfully obtained by using 26 specifically designed Panthera-specific primer sets. The genome organization and gene arrangement of the five tiger samples were similar to each other; however polymorphic tandem repeat sequences were observed in the control region (CR). This led to a difference in the genome lengths obtained from these five samples with an average size of 16,994 bp for the five tiger mitochondrial genomes. The nucleotide base composition was on average as follows: A, 31.8%; T, 27.0%; C, 26.6%; G, 14.6% and exhibited compositional asymmetry. Most of tiger mitochondrial genome characteristics are similar to those of other common vertebrate species; however, some distinctive features were observed in the CR. First, the repetitive sequence 2 (RS 2) contained two repeat units of 80 bp and the first 15 bp of what would be the third repeat motif. The repetitive sequence 3 (RS 3) contained 47–50 repeat motifs of a shorter 8 bp (ACGTAYAC)n. Second, length heteroplasmy polycystosine (poly-C) stretches was observed at the end of the HV I locus in all tiger samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号