首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Yersinia enterocolitica outer membrane protein A (OmpA) is one of the major outer membrane proteins with high immunogenicity. We performed the polymorphism analysis for the outer membrane protein A and putative outer membrane protein A (p-ompA) family protein gene of 318 Y. enterocolitica strains.

Results

The data showed all the pathogenic strains and biotype 1A strains harboring ystB gene carried both ompA and p-ompA genes; parts of the biotype 1A strains not harboring ystB gene carried either ompA or p-ompA gene. In non-pathogenic strains (biotype 1A), distribution of the two genes and ystB were highly correlated, showing genetic polymorphism. The pathogenic and non-pathogenic, highly and weakly pathogenic strains were divided into different groups based on sequence analysis of two genes. Although the variations of the sequences, the translated proteins and predicted secondary or tertiary structures of OmpA and P-OmpA were similar.

Conclusions

OmpA and p-ompA gene were highly conserved for pathogenic Y. enterocolitica. The distributions of two genes were correlated with ystB for biotype 1A strains. The polymorphism analysis results of the two genes probably due to different bio-serotypes of the strains, and reflected the dissemination of different bio-serotype clones of Y. enterocolitica.  相似文献   

2.
3.
The zinc finger protein ZPR1 is present in the cytoplasm of quiescent mammalian cells and translocates to the nucleus upon treatment with mitogens, including epidermal growth factor (EGF). Homologues of ZPR1 were identified in yeast and mammals. These ZPR1 proteins bind to eukaryotic translation elongation factor-1α (eEF-1α). Studies of mammalian cells demonstrated that EGF treatment induces the interaction of ZPR1 with eEF-1α and the redistribution of both proteins to the nucleus. In the yeast Saccharomyces cerevisiae, genetic analysis demonstrated that ZPR1 is an essential gene. Deletion analysis demonstrated that the NH2-terminal region of ZPR1 is required for normal growth and that the COOH-terminal region was essential for viability in S. cerevisiae. The yeast ZPR1 protein redistributes from the cytoplasm to the nucleus in response to nutrient stimulation. Disruption of the binding of ZPR1 to eEF-1α by mutational analysis resulted in an accumulation of cells in the G2/M phase of cell cycle and defective growth. Reconstitution of the ZPR1 interaction with eEF-1α restored normal growth. We conclude that ZPR1 is essential for cell viability and that its interaction with eEF-1α contributes to normal cellular proliferation.  相似文献   

4.
5.
Bafilomycins produced by Kitasatospora cheerisanensis KCTC- 2395 belong to the 16-membered macrolactone family plecomacrolide antibiotics. Bafilomycin B1 contains 2-amino- 3-hydroxycyclopent-2-enone (C5N), a five membered ring, which gets condensed via an amide linkage to bafilomycin polyketide. To study the biosynthetic pathway of C5N during bafilomycin biosynthesis in K. cheerisanensis KCTC2395, we attempted the functional analysis of two putative genes, encoding 5-aminolevulinic acid synthase (ALAS) and acyl- CoA ligase (ACL). The amplified putative genes for ALAS and ACL were cloned into the E. coli expression vector pET- 32a(+) plasmid, following which the soluble recombinant ALAS and ACL proteins were purified through nickel-affinity column chromatography. Through HPLC analysis of the enzyme reaction mixture, we confirmed the products of putative ALAS and ACL reaction as 5-aminolevulinic acid (5-ALA) and 5-ALA-CoA, respectively. The optimal pH for the putative ALAS reaction was 7.5, and for putative ACL reaction was 7.0, as confirmed by the colorimetric assay. Furthermore, pyridoxal 5'-phosphate (PLP) was found to be an essential cofactor in the putative ALAS reaction, and ATP was a cofactor for the putative ACL catalysis. Finally, we also confirmed that the simultaneous treatment of putative ACL and putative ALAS enzymes resulted in the production of C5N compound from 5-ALA.  相似文献   

6.
Kallmann syndrome, a form of idiopathic hypogonadotropic hypogonadism, is characterized by developmental abnormalities of the reproductive system and abnormal olfaction. Despite association of certain genes with idiopathic hypogonadotropic hypogonadism, the genetic inheritance and expression are complex and incompletely known. In the present study, seven Kallmann syndrome pedigrees in an ethnic Han Chinese population were screened for genetic mutations. The exons and intron–exon boundaries of 19 idiopathic hypogonadotropic hypogonadism (idiopathic hypogonadotropic hypogonadism)-related genes in seven Chinese Kallmann syndrome pedigrees were sequenced. Detected mutations were also tested in 70 sporadic Kallmann syndrome cases and 200 Chinese healthy controls. In pedigrees 1, 2, and 7, the secondary sex characteristics were poorly developed and the patients’ sense of smell was severely or completely lost. We detected a genetic mutation in five of the seven pedigrees: homozygous KAL1 p.R191ter (pedigree 1); homozygous KAL1 p.C13ter (pedigree 2; a novel mutation); heterozygous FGFR1 p.R250W (pedigree 3); and homozygous PROKR2 p.Y113H (pedigrees 4 and 5). No genetic change of the assayed genes was detected in pedigrees 6 and 7. Among the 70 sporadic cases, we detected one homozygous and one heterozygous PROKR2 p.Y113H mutation. This mutation was also detected heterozygously in 2/200 normal controls and its pathogenicity is likely questionable. The genetics and genotype–phenotype relationships in Kallmann syndrome are complicated. Classical monogenic inheritance does not explain the full range of genetic inheritance of Kallmann syndrome patients. Because of stochastic nature of genetic mutations, exome analyses of Kallmann syndrome patients may provide novel insights.  相似文献   

7.
Mago nashi (Mago) and Y14 proteins, highly conserved among eukaryotes, participate in mRNA localization and splicing, and as such play important roles in oogenesis, embryogenesis and germ-line sex determination during animal development. Here we identified mago (Acmago) and Y14 (AcY14) homologues derived from Antrodia cinnamomea. Acmago encodes 149 amino acids and AcY14 encodes 168 amino acids. Multiple amino acid sequence alignment as well as secondary and tertiary structure prediction showed that AcMago and AcY14 have similar protein structure to the reported crystal structures of other Mago and Y14 proteins. During fungal development both Acmago and AcY14 genes were abundantly expressed in natural basidiomes. This is the first report of the molecular characterization and expression analysis of the mago and Y14 genes from fungi.  相似文献   

8.
9.
10.
Mono-glucosylation of (H/K/N)Ras by Clostridium sordellii lethal toxin (TcsL) blocks critical survival signaling pathways, resulting in apoptotic cell death. One yet unsolved problem in studies on TcsL is the lack of a method allowing the specific detection of (H/K/N)Ras glucosylation. In this study, we identify the Ras(Mab 27H5) antibody as a glucosylation-sensitive antibody capable for the immunoblot detection of (H/K/N)Ras glucosylation in TcsL-treated cells. Alternative Ras antibodies including the K-Ras(Mab F234) antibody or the v-H-Ras(Mab Y13-159) antibody recognize Ras proteins regardless of glucosylation. (H/K)Ras are further shown to be more efficaciously glucosylated by TcsL than Rac1 in rat basophilic leukemia cells as well as in a cell-free system.

Structured summary

MINT-7261742: TcsL (uniprotkb:Q46342) enzymaticly reacts (MI:0414) H-RAS (uniprotkb:P01112) by enzymatic studies (MI:0415)MINT-7261729: TcsL (uniprotkb:Q46342) enzymaticly reacts (MI:0414) Rac1 (uniprotkb:P63000) by enzymatic studies (MI:0415)MINT-7261772: TcsL (uniprotkb:Q46342) enzymaticly reacts (MI:0414) K-RAS (uniprotkb:P01116) by enzymatic studies (MI:0415)MINT-7261784: TcsL (uniprotkb:Q46342) enzymaticly reacts (MI:0414) N-RAS (uniprotkb:P01111) by enzymatic studies (MI:0415)  相似文献   

11.
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.  相似文献   

12.
Modified polyacrylamide gel and SDS-polyacrylamide gel electrophoretic systems using a low molarity tris-HCl buffer and equal pH of homogenizing buffer and stacking gel provided improved stacking for separation of soluble proteins from Heterodera schachtii, H. trifolii, H. lespedezae, and H. glycines races 1, 2, 3, and 4, compared with previous studies with cyst nematodes, The four Heterodera species were easily distinguished using the polyacrylamide gel system, but H. trifolii and H. lespedezae had similar protein patterns. H. glycines races were not separable by that system. The SDS-polyacrylamide gel system produced different protein patterns for all four Heterodera species although H. trifolii and H. lespedezae differed by only a single band, suggesting that these two may be subspecifically related. A protein band unique to H. glycines races 3 and 4 was not detected in SDS-polyacrylamide gel profiles from races 1 and 2. Molecular weight determinations were 55,000 for distinctive proteins in profiles of H. trifolii and 75,000 for H. glycines races 3 and 4.  相似文献   

13.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.  相似文献   

14.
A survey was performed to investigate the infection status of freshwater fish with zoonotic trematode metacercariae in Phnom Penh and Pursat Province, Cambodia. All collected fish with ice were transferred to our laboratory and examined using the artificial digestion method. In fish from Phnom Penh, 2 kinds of metacercariae (Opisthorchis viverrini and Haplorchis yokogawai) were detected. O. viverrini metacercariae were positive in 37 (50.0%) of 74 fish in 11 species (average no. metacercariae/fish, 18.6). H. yokogawai metacercariae were detected in 23 (57.5%) of 40 fish in 5 species (average no. metacercariae/fish, 21.0). In fish from Pursat Province, 5 kinds of metacercariae (O. viverrini, H. yokogawai, Haplorchis pumilio, Centrocestus formosanus, and Procerovum sp.) were detected; O. viverrini metacercariae (n=3) in 2 fish species (Henicorhynchus lineatus and Puntioplites falcifer), H. yokogawai metacercariae (n=51) in 1 species (P. falcifer), H. pumilio metacercariae (n=476) in 2 species (H. lineatus and Pristolepis fasciata), C. formosanus metacercariae (n=1) in 1 species (H. lineatus), and Procerovum sp. metacercariae (n=63) in 1 species (Anabas testudineus). From the above results, it has been confirmed that various freshwater fish play the role of a second intermediate host for zoonotic trematodes (O. viverrini, H. yokogawai, H. pumilio, C. formosanus, and Procerovum sp.) in Cambodia.  相似文献   

15.
Many environmentally important photo- and chemolithoautotrophic bacteria accumulate globules of polymeric, water-insoluble sulfur as a transient product during oxidation of reduced sulfur compounds. Oxidation of this sulfur requires the concerted action of Dsr proteins. However, individual functions and interplay of these proteins are largely unclear. We proved with a ΔdsrE mutant experiment that the cytoplasmic α2β2γ2-structured protein DsrEFH is absolutely essential for the oxidation of sulfur stored in the intracellular sulfur globules of the purple sulfur bacterial model organism Allochromatium vinosum. The ability to degrade stored sulfur was fully regained upon complementation with dsrEFH in trans. The crystal structure of DsrEFH was determined at 2.5 Å resolution to assist functional assignment in detail. In conjunction with phylogenetic analyses, two different types of putative active sites were identified in DsrE and DsrH and shown to be characteristic for sulfur-oxidizing bacteria. Conserved Cys78 of A. vinosum DsrE corresponds to the active cysteines of Escherichia coli YchN and TusD. TusBCD and the protein TusE are parts of sulfur relay system involved in thiouridine biosynthesis. DsrEFH interacts with DsrC, a TusE homologue encoded in the same operon. The conserved penultimate cysteine residue in the carboxy-terminus of DsrC is essential for the interaction. Here, we show that Cys78 of DsrE is strictly required for interaction with DsrC while Cys20 in the putative active site of DsrH is dispensable for that reaction. In summary, our findings point at the occurrence of sulfur transfer reactions during sulfur oxidation via the Dsr proteins.  相似文献   

16.
Arabinogalactan proteins are abundant cell surface proteoglycans in plants and are implicated to act as developmental markers during plant growth. We previously reported that AtGALT31A, AtGALT29A, and AtGLCAT14A-C, which are involved in the biosynthesis of arabinogalactan proteins, localize not only to the Golgi cisternae but also to smaller compartments, which may be a part of the unconventional protein secretory pathway in plants. In Poulsen et al.,1 we have demonstrated increased targeting of AtGALT29A to small compartments when Y144 is substituted with another amino acid, and we implicated a role for Y144 in the subcellular targeting of AtGALT29A. In this paper, we are presenting another aspect of Y144 substitution in AtGALT29A; namely, Y144A construct demonstrated a 2.5-fold increase while Y144E construct demonstrated a 2-fold decrease in the galactosyltransferase activity of AtGALT29A. Therefore, the electrostatic status of Y144, which is regulated by an unknown kinase/phosphatase system, may regulate AtGALT29A enzyme activity. Moreover, we have identified additional proteins, apyrase 3 (APY3; At1g14240) and UDP-glucuronate epimerases 1 and 6 (GAE1, At4g30440; GAE6, At3g23820), from Arabidopsis thaliana that co-localize with AtGALT31A in the small compartments when expressed transiently in Nicotiana benthamiana. These proteins may play roles in nucleotide sugar metabolism in the small compartments together with arabinogalactan glycosyltransferases.  相似文献   

17.
Intracellular lipid-binding proteins (LBPs) impact fatty acid homeostasis in various ways, including fatty acid transport into mitochondria. However, the physiological consequences caused by mutations in genes encoding LBPs remain largely uncharacterized. Here, we explore the metabolic consequences of lbp-5 gene deficiency in terms of energy homeostasis in Caenorhabditis elegans. In addition to increased fat storage, which has previously been reported, deletion of lbp-5 attenuated mitochondrial membrane potential and increased reactive oxygen species levels. Biochemical measurement coupled to proteomic analysis of the lbp-5(tm1618) mutant revealed highly increased rates of glycolysis in this mutant. These differential expression profile data support a novel metabolic adaptation of C. elegans, in which glycolysis is activated to compensate for the energy shortage due to the insufficient mitochondrial β-oxidation of fatty acids in lbp-5 mutant worms. This report marks the first demonstration of a unique metabolic adaptation that is a consequence of LBP-5 deficiency in C. elegans. [BMB Reports 2014; 47(1): 15-20]  相似文献   

18.
Gloeobacter violaceus PCC 7421 is a unique cyanobacterium that has no thylakoids and whose genome has been sequenced [Y. Nakamura, T. Kaneko, S. Sato, M. Mimuro, H. Miyashita, T. Tsuchiya, S. Sasamoto, A. Watanabe, K. Kawashima, Y. Kishida, C. Kiyokawa, M. Kohara, M. Matsumoto, A. Matsuno, N. Nakazaki, S. Shimpo, C. Takeuchi, M. Yamada, S. Tabata, Complete Genome Structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Research 10 (2003) 137-145]. Phycobilisomes of G. violaceus were isolated and analyzed by SDS-PAGE followed by N-terminal sequencing. Three rod-linker subunits (CpeC, CpeD and CpeE) were identified as predicted from the genome sequence. The cpcC1 and cpcC2 genes at order locus named (OLN) glr0950 and gll 3219 encoding phycocyanin-associated linker proteins from G. violaceus are 56 and 55 amino acids longer at the N-terminus than the open reading frame proposed in the genome. The two amino acid extensions showed a 66% identity to one another. Also, the N-terminal extensions of these sequences were similar to domains in both the rod-capping-linker protein CpcD2 and to the C-terminus domain of the phycoerythrin-associated linker protein CpeC. These domains are not only unusual in their N-terminal location, but are unusual in that they are more closely related in sequence similarity to the C-terminus domain of the phycoerythrin-associated linker, CpeC of G. violaceus, than to the C-terminus domain of phycocyanin-associated linker CpcC in other cyanobacteria. These linker proteins with unique special domains are indicators of the unusual structure of the phycobilisomes of G. violaceus.  相似文献   

19.
Heinl S  Spath K  Egger E  Grabherr R 《Plasmid》2011,66(3):159-168
Lactobacillus buchneri is probably the most beneficial microorganism for efficient preservation of animal feed silages made from grass, maize and other plant material against aerobic spoilage. Its obligatory heterofermentative nature, acid resistance and robustness have drawn attention to this species for applications as silage starter culture as well as for genetic engineering. For the first time, two cryptic plasmids present in the same L. buchneri strain, L. buchneri CD034, were isolated, sequenced and characterized. The larger plasmid, designated pCD034-1 was found to be 3424 bp in length with a G + C content of 38.36%. The smaller plasmid, designated pCD034-2 was found to be 2707 bp in length with a G + C content of 38.60%. On both plasmids we predicted three open reading frames. On pCD034-1, ORF 1 encodes a putative replication protein which shares 99% identity with the RepA protein of a Lactobacillus plantarum derived pC194/pUB110-family plasmid. ORF 2 encodes a putative protein of unknown function. ORF 1 and ORF 2 of pCD034-2 correspond to RepA and RepB proteins similar to those of plasmid pLB4 from L. plantarum. ORF 3 of both plasmids encodes a putative mobilization protein similar to that of the pediococcal plasmid pF8801. Double strand origins, putative single strand origins and typical mobilization start signals were identified. Both plasmids were shown to be maintained at relatively high plasmid copy numbers. Two shuttle vectors carrying the origins of replication of pCD034-1 and pCD034-2 were constructed and used to successfully transform two other species isolated from the same environment. Hence, we consider the two novel L. buchneri plasmids a valuable resource for the generation of shuttle and expression vectors for LAB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号