首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and function of myosin crossbridges in asynchronous insect flight muscle (IFM) have been elucidated in situ using multiple approaches. These include generating “atomic” models of myosin in multiple contractile states by rebuilding the crystal structure of chicken subfragment 1 (S1) to fit IFM crossbridges in lower-resolution electron microscopy tomograms and by “mapping” the functional effects of genetically substituted, isoform-specific domains, including the converter domain, in chimeric IFM myosin to sequences in the crystal structure of chicken S1.We prepared helical reconstructions (∼ 25 Å resolution) to compare the structural characteristics of nucleotide-free myosin0 S1 bound to actin (acto-S1) isolated from chicken skeletal muscle (CSk) and the flight muscles of Lethocerus (Leth) wild-type Drosophila (wt Dros) and a Drosophila chimera (IFI-EC) wherein the converter domain of the indirect flight muscle myosin isoform has been replaced by the embryonic skeletal myosin converter domain. Superimposition of the maps of the frozen-hydrated acto-S1 complexes shows that differences between CSk and IFM S1 are limited to the azimuthal curvature of the lever arm: the regulatory light-chain (RLC) region of chicken skeletal S1 bends clockwise (as seen from the pointed end of actin) while those of IFM S1 project in a straight radial direction. All the IFM S1s are essentially identical other than some variation in the azimuthal spread of density in the RLC region. This spread is most pronounced in the IFI-EC S1, consistent with proposals that the embryonic converter domain increases the compliance of the IFM lever arm affecting the function of the myosin motor. These are the first unconstrained models of IFM S1 bound to actin and the first direct comparison of the vertebrate and invertebrate skeletal myosin II classes, the latter for which, data on the structure of discrete acto-S1 complexes, are not readily available.  相似文献   

2.
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (Vmax) by ∼ 60% compared to wild-type myosin, but there is no change in apparent actin affinity (Km). While ATP or AMP-PNP (adenylyl-imidodiphosphate) binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence by ∼ 15% or ∼ 8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by ∼ 35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional “cracking” of the crystal-like array of myofilaments. Fibers from 1-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in 2-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In 1-week-old adults, flight capability is lost. Thus, altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle.  相似文献   

3.
Spin-labeling and multifrequency EPR spectroscopy were used to probe the dynamic local structure of skeletal myosin in the region of force generation. Subfragment 1 (S1) of rabbit skeletal myosin was labeled with an iodoacetamide spin label at C707 (SH1). X-and W-band EPR spectra were recorded for the apo state and in the presence of ADP and nucleotide analogs. EPR spectra were analyzed in terms of spin-label rotational motion within myosin by fitting them with simulated spectra. Two models were considered: rapid-limit oscillation (spectrum-dependent on the orientational distribution only) and slow restricted motion (spectrum-dependent on the rotational correlation time and the orientational distribution). The global analysis of spectra obtained at two microwave frequencies (9.4 GHz and 94 GHz) produced clear support for the second model and enabled detailed determination of rates and amplitudes of rotational motion and resolution of multiple conformational states. The apo biochemical state is well-described by a single structural state of myosin (M) with very restricted slow motion of the spin label. The ADP-bound biochemical state of myosin also reveals a single structural state (M*, shown previously to be the same as the post-powerstroke ATP-bound state), with less restricted slow motion of the spin label. In contrast, the extra resolution available at 94 GHz reveals that the EPR spectrum of the S1.ADP.Vi-bound biochemical state of myosin, which presumably mimics the S1.ADP.Pi state, is resolved clearly into three spectral components (structural states). One state is indistinguishable from that of the ADP-bound state (M*) and is characterized by moderate restriction and slow motion, with a mole fraction of 16%. The remaining 84% (M**) contains two additional components and is characterized by fast rotation about the x axis of the spin label. After analyzing EPR spectra, myosin ATPase activity, and available structural information for myosin II, we conclude that post-powerstroke and pre-powerstroke structural states (M* and M**) coexist in the S1.ADP.Vi biochemical state. We propose that the pre-powerstroke state M** is characterized by two structural states that could reflect flexibility between the converter and N-terminal domains of myosin.  相似文献   

4.
The specificity of the fluorescent reagent N-iodoacetyl-N-(5-sulfo-1-naphthyl)ethylenediamine (1,5 IAEDANS) for a specific thiol group of myosin has been characterized by a comparison with iodoacetamide (IAA) and by observing maximal enhancement of the Ca2+-ATPase activity and inhibition of the K+-EDTA-ATPase activity of myosin. The stoichiometry of the [3H]1,5 IAEDANS bound to myosin indicates the presence of two fast-reacting thiols which correspond to the “SH1” groups responsible for the catalytic properties of myosin. Moreover, it has been unequivocally demonstrated by gel electrophoresis that the fast-reacting thiol is located on the myosin heavy chain. A single radioactivity-labeled thiol peptide obtained from tryptic digests of myosin labeled with [3H]1,5 IAEDANS or iodo[1-14C]acetamide indicates strongly that the identical thiol was labeled by both reagents.  相似文献   

5.
Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). To elucidate the structural mechanism of activation, we have studied RLC phosphorylation in tarantula thick filaments, whose high-resolution structure is known. In the relaxed state, tarantula RLCs are ∼ 50% non-phosphorylated and 50% mono-phosphorylated, while on activation, mono-phosphorylation increases, and some RLCs become bi-phosphorylated. Mass spectrometry shows that relaxed-state mono-phosphorylation occurs on Ser35, while Ca2+-activated phosphorylation is on Ser45, both located near the RLC N-terminus. The sequences around these serines suggest that they are the targets for protein kinase C and myosin light chain kinase (MLCK), respectively. The atomic model of the tarantula filament shows that the two myosin heads (“free” and “blocked”) are in different environments, with only the free head serines readily accessible to kinases. Thus, protein kinase C Ser35 mono-phosphorylation in relaxed filaments would occur only on the free heads. Structural considerations suggest that these heads are less strongly bound to the filament backbone and may oscillate occasionally between attached and detached states (“swaying” heads). These heads would be available for immediate actin interaction upon Ca2+ activation of the thin filaments. Once MLCK becomes activated, it phosphorylates free heads on Ser45. These heads become fully mobile, exposing blocked head Ser45 to MLCK. This would release the blocked heads, allowing their interaction with actin. On this model, twitch force would be produced by rapid interaction of swaying free heads with activated thin filaments, while prolonged exposure to Ca2+ on tetanus would recruit new MLCK-activated heads, resulting in force potentiation.  相似文献   

6.
The crystal structure of a proteolytic subfragment from scallop striated muscle myosin, complexed with MgADP, has been solved at 2.5 A resolution and reveals an unusual conformation of the myosin head. The converter and the lever arm are in very different positions from those in either the pre-power stroke or near-rigor state structures; moreover, in contrast to these structures, the SH1 helix is seen to be unwound. Here we compare the overall organization of the myosin head in these three states and show how the conformation of three flexible "joints" produces rearrangements of the four major subdomains in the myosin head with different bound nucleotides. We believe that this novel structure represents one of the prehydrolysis ("ATP") states of the contractile cycle in which the myosin heads stay detached from actin.  相似文献   

7.
Heng Li 《BBA》2006,1757(11):1512-1519
The state transition in cyanobacteria is a long-discussed topic of how the photosynthetic machine regulates the excitation energy distribution in balance between the two photosystems. In the current work, whether the state transition is realized by “mobile phycobilisome (PBS)” or “energy spillover” has been clearly answered by monitoring the spectral responses of the intact cells of the cyanobacterium Spirulina platensis. Firstly, light-induced state transition depends completely on a movement of PBSs toward PSI or PSII while the redox-induced one on not only the “mobile PBS” but also an “energy spillover”. Secondly, the “energy spillover” is triggered by dissociation of PSI trimers into the monomers which specially occurs under a case from light to dark, while the PSI monomers will re-aggregate into the trimers under a case from dark to light, i.e., the PSI oligomerization is reversibly regulated by light switch on and off. Thirdly, PSI oligomerization is regulated by the local H+ concentration on the cytosol side of the thylakoid membranes, which in turn is regulated by light switch on and off. Fourthly, PSI oligomerization change is the only mechanism for the “energy spillover”. Thus, it can be concluded that the “mobile PBS” is a common rule for light-induced state transition while the “energy spillover” is only a special case when dark condition is involved.  相似文献   

8.
The intrinsic fluorescence of smooth muscle myosin is sensitive to both nucleotide binding and hydrolysis. We have examined this relationship by making MDE mutants containing a single tryptophan residue at each of the seven positions found in the wild-type molecule. Previously, we have demonstrated that a conserved tryptophan residue (W512) is a major contributor to nucleotide-dependent changes of intrinsic fluorescence in smooth muscle myosin. In this study, an MDE containing all the endogenous tryptophans except W512 (W512 KO-MDE) decreases in intrinsic fluorescence upon nucleotide binding, demonstrating that the intrinsic fluorescence enhancement of smooth muscle myosin is not solely due to W512. Candidates for the observed quench of intrinsic fluorescence in W512 KO-MDE include W29 and W36. Whereas the intrinsic fluorescence of W36-MDE is only slightly sensitive to nucleotide binding, that of W29-MDE is paradoxically both quenched and blue-shifted upon nucleotide binding. Steady-state and time-resolved experiments suggest that fluorescence intensity changes of W29 involve both excited-state and ground-state quenching mechanisms. These results have important implications for the role of the N-terminal domain (residues 1-76) in smooth muscle myosin in the molecular mechanism of muscle contraction.  相似文献   

9.
3′-Phospho-adenosine-5′-phosphosulphate (PAPS) synthases are fundamental to mammalian sulphate metabolism. These enzymes have recently been linked to a rising number of human diseases. Despite many studies, it is not yet understood how the mammalian PAPS synthases 1 and 2 interact with each other. We provide first evidence for heterodimerisation of these two enzymes by pull-down assays and Förster resonance energy transfer (FRET) measurements. Kinetics of dimer dissociation/association indicates that these heterodimers form as soon as PAPSS1 and -S2 encounter each other in solution. Affinity of the homo- and heterodimers were found to be in the low nanomolar range using anisotropy measurements employing proteins labelled with the fluorescent dye IAEDANS that - in spite of its low quantum yield - is well suited for anisotropy due to its large Stokes shift. Within its kinase domain, the PAPS synthase heterodimer displays similar substrate inhibition by adenosine-5′-phosphosulphate (APS) as the homodimers. Due to divergent catalytic efficacies of PAPSS1 and -S2, the heterodimer might be a way of regulating PAPS synthase function within mammalian cells.  相似文献   

10.
In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long α-helical “heavy chain” stabilized by a “regulatory” light chain (RLC) and an “essential” light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca2+ to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca2+. Our results indicate that loss of Ca2+ abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.  相似文献   

11.
Previously, we (Suzuki et al. (1978) J. Biochem. 84, 1529) reported that the sedimentation constant of chicken gizzard myosin in the presence of ATP was approximately 10S in 0.15 M or 0.2 M KCl and approximately 6S in 0.3 M or higher concentrations of KCl. The 10S-myosin and 6S-myosin were considerably different in conformation from each other. I now report the finding that the transformation of 6S-myosin to the 10S conformation results in a drastic change in the reactivity of thiol groups of gizzard myosin with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (abbreviated as IAEDANS). The so-called SH1-type thiol groups (Sekine et al. (1962) J. Biol. Chem. 237, 2769) were present on 68 kilodalton fragments (produced by tryptic digestion) of gizzard myosin. The reactivity of the thiol groups with IAEDANS was greatly decreased by the 6S to 10S transformation of gizzard myosin molecules. Two other findings were obtained. Blocking the SH1-type thiol groups made the Mg-ATPase activities (in the presence of gizzard native tropomyosin) of gizzard myosin and of acto-gizzard myosin insensitive to calcium and to phosphorylation of regulatory light chains, although calcium-dependent phosphorylation of the IAEDANS-modified myosin could still occur. It also made gizzard myosin filaments resistant to the disassembly action of ATP.  相似文献   

12.
Andrij Baumketner 《Proteins》2012,80(12):2701-2710
Upon ATP binding, myosin motor protein is found in two alternative conformations, prerecovery state M* and postrecovery state M**. The transition from one state to the other, known as the recovery stroke, plays a key role in the myosin functional cycle. Despite much recent research, the microscopic details of this transition remain elusive. A critical step in the recovery stroke is the rotation of the converter domain from “up” position in prerecovery state to “down” position in postrecovery state that leads to the swing of the lever arm attached to it. In this work, we demonstrate that the two rotational states of the converter domain are determined by the interactions within a small structural motif in the force‐generating region of the protein that can be accurately modeled on computers using atomic representation and explicit solvent. Our simulations show that the transition between the two states is controlled by a small helix (SH1) located next to the relay helix and relay loop. A small translation in the position of SH1 away from the relay helix is seen to trigger the transition from “up” state to “down” state. The transition is driven by a cluster of hydrophobic residues I687, F487, and F506 that make significant contributions to the stability of both states. The proposed mechanism agrees well with the available structural and mutational studies. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

13.
We measured the nucleotide turnover rate of myosin in tarantula leg muscle fibers by observing single turnovers of the fluorescent nucleotide analog 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate, as monitored by the decrease in fluorescence when 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate (mantATP) is replaced by ATP in a chase experiment. We find a multiexponential process with approximately two-thirds of the myosin showing a very slow nucleotide turnover time constant (∼ 30 min). This slow-turnover state is termed the super-relaxed state (SRX). If fibers are incubated in 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-diphosphate and chased with ADP, the SRX is not seen, indicating that trinucleotide-relaxed myosins are responsible for the SRX. Phosphorylation of the myosin regulatory light chain eliminates the fraction of myosin with a very long lifetime. The data imply that the very long-lived SRX in tarantula fibers is a highly novel adaptation for energy conservation in an animal that spends extremely long periods of time in a quiescent state employing a lie-in-wait hunting strategy. The presence of the SRX measured here correlates well with the binding of myosin heads to the core of the thick filament in a structure known as the “interacting-heads motif,” observed previously by electron microscopy. Both the structural array and the long-lived SRX require relaxed filaments or relaxed fibers, both are lost upon myosin phosphorylation, and both appear to be more stable in tarantula than in vertebrate skeletal or vertebrate cardiac preparations.  相似文献   

14.
The subfragment 1 from dog cardiac myosin was modified by N-cyclohexyl-N′-(2-(4-morpholinyl) ethyl) carbodiimide methyl p-toluenesulfonate in the presence of the nucleophile nitrotyrosine ethyl ester. At pH 5.9, the inactivation of ATPase activity was very rapid and followed first-order kinetics. K+ (EDTA) - and Ca++-ATPase activities decreased at the same rate, and the initial phosphate burst was lost. Inactivation and incorporation of the nucleophile occurred simultaneously. Complete inactivation was accompanied by the incorporation of 1 mol of (14C) nitrotyrosine per mol of myosin subfragment 1. Inactivation and incorporation of the label were essentially equal, either with the native subfragment 1, or with the subfragment 1 in which the reactive thiols were protected by cyanylation prior to modification. No protection by nucleotides was observed. These data suggest that one carboxyl group is essential for the active conformation of cardiac myosin. This finding is in general agreement with that previously obtained with skeletal subfragment 1 (Lacombe et al. (1981) Biochemistry 20, 3648–3653) except that inactivation of cardiac subfragment 1 was not prevented by nucleotides.  相似文献   

15.
S Kojima  K Fujiwara  H Onishi 《Biochemistry》1999,38(36):11670-11676
To determine if a thiol group called SH1 has an important role in myosin's motor function, we made a mutant heavy meromyosin (HMM) without the thiol group and analyzed its properties. In chicken gizzard myosin, SH1 is located on the cysteine residue at position 717. By using genetic engineering techniques, this cysteine was substituted with threonine in chicken gizzard HMM, and that mutant HMM and unmutated HMM were expressed in biochemical quantities using a baculovirus system. The basal EDTA-, Ca(2+)-, and Mg(2+)-ATPase activities of the mutant were similar to those of HMM whose SH1 was modified by N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS). However, while the chemically modified HMM lost the function of the light chain phosphorylation-dependent regulation of the actin-activated ATPase activity, the mutant HMM exhibited the normal light chain-regulated actin-activated ATPase activity. Using an in vitro motility assay system, we found that the IAEDANS-modified HMM was unable to propel actin filaments but that the mutant HMM was able to move actin filaments in a manner indistinguishable from filament sliding generated by unmutated HMM. These results indicate that SH1 itself is not essential for the motor function of myosin and suggest that various effects observed with HMM modified by thiol reagents such as IAEDANS are caused by the bulkiness of the attached probes, which interferes with the swinging motion generated during ATP hydrolysis.  相似文献   

16.
The SH1 helix is a joint that links the converter subdomain to the rest of the myosin motor domain. Recently, we showed that a mutation within the SH1 helix in Dictyostelium myosin II (R689H) reduced the elasticity and thermal stability of the protein. To reveal the involvement of the SH1 helix in ATP-dependent conformational changes of the motor domain, we have investigated the effects of the R689H mutation on the conformational changes of the converter, using a GFP-based fluorescence resonance energy transfer method. Although the mutation does not seem to strongly affect conformations, we found that it significantly reduced the activation energy required for the ATP-induced conformational transition corresponding to the recovery stroke. Given the effects of the mutation on the mechanical properties of myosin, we propose that the SH1 helix plays an important role in the mechanochemical energy conversion underlying the conformational change of the myosin motor domain.  相似文献   

17.
During the recovery stroke, the myosin motor is primed for the next power stroke by a 60° rotation of its lever arm. This reversible motion is coupled to the activation of the ATPase function of myosin through conformational changes along the relay helix, which runs from the Switch-2 loop near the ATP to the converter domain carrying the lever arm. Via a hydrogen bond between the side-chain of Asn475 on the relay helix and the Gly457/Ser456 peptide group on the Switch-2, the rotation of the converter domain is coupled to the formation of a hydrogen bond between Gly457 and γ-phosphate that is essential for ATP hydrolysis. Here, molecular dynamics simulations of Dictyostelium discoideum myosin II in the two end conformations of the recovery stroke with different nucleotide states (ATP, ADP·Pi, ADP) reveal that the side-chain of Asn475 breaks away from Switch-2 upon ATP hydrolysis to make a hydrogen bond with Tyr573. This sensing of the nucleotide state is achieved by a small displacement of the cleaved γ-phosphate towards Gly457 which in turn pushes Asn475 away. The sensing plays a dual role by (i) preventing the wasteful reversal of the recovery stroke while the nucleotide is in the ADP·Pi state, and (ii) decoupling the relay helix from Switch-2, thus allowing the power stroke to start upon initial binding to actin while Gly457 of Switch-2 keeps interacting with the Pi (known to be released only later after tight actin binding). A catalytically important salt bridge between Arg238 (on Switch-1) and Glu459 (on Switch-2), which covers the hydrolysis site, is seen to form rapidly when ATP is added to the pre-recovery stroke conformer and remains stable after the recovery stroke, indicating that it has a role in shaping the ATP binding site by induced fit.  相似文献   

18.
The cation-permeable channel PKD2L1 forms a homomeric assembly as well as heteromeric associations with both PKD1 and PKD1L3, with the cytoplasmic regulatory domain (CRD) of PKD2L1 often playing a role in assembly and/or function. Our previous work indicated that the isolated PKD2L1 CRD assembles as a trimer in a manner dependent on the presence of a proposed oligomerization domain. Herein we describe the 2.7 Å crystal structure of a segment containing the PKD2L1 oligomerization domain which indicates that trimerization is driven by the β-branched residues at the first and fourth positions of a heptad repeat (commonly referred to as “a” and “d”) and by a conserved R-h-x-x-h-E salt bridge motif that is largely unique to parallel trimeric coiled coils. Further analysis of the PKD2L1 CRD indicates that trimeric association is sufficiently strong that no other species are present in solution in an analytical ultracentrifugation experiment at the lowest measurable concentration of 750 nM. Conversely, mutation of the “a” and “d” residues leads to formation of an exclusively monomeric species, independent of concentration. Although both monomeric and WT CRDs are stable in solution and bind calcium with 0.9 μM affinity, circular dichroism studies reveal that the monomer loses 25% more α-helical content than WT when stripped of this ligand, suggesting that the CRD structure is stabilized by trimerization in the ligand-free state. This stability could play a role in the function of the full-length complex, indicating that trimerization may be important for both homo- and possibly heteromeric assemblies of PKD2L1.  相似文献   

19.
The function of the src-homology 3 (SH3) domain in class II myosins, a distinct beta-barrel structure, remains unknown. Here, we provide evidence, using electron cryomicroscopy, in conjunction with light-scattering, fluorescence and kinetic analyses, that the SH3 domain facilitates the binding of the N-terminal extension of the essential light chain isoform (ELC-1) to actin. The 41 residue extension contains four conserved lysine residues followed by a repeating sequence of seven Pro/Ala residues. It is widely believed that the highly charged region interacts with actin, while the Pro/Ala-rich sequence forms a rigid tether that bridges the approximately 9 nm distance between the myosin lever arm and the thin filament. In order to localize the N terminus of ELC in the actomyosin complex, an engineered Cys was reacted with undecagold-maleimide, and the labeled ELC was exchanged into myosin subfragment-1 (S1). Electron cryomicroscopy of S1-bound actin filaments, together with computer-based docking of the skeletal S1 crystal structure into 3D reconstructions, showed a well-defined peak for the gold cluster near the SH3 domain. Given that SH3 domains are known to bind proline-rich ligands, we suggest that the N-terminal extension of ELC interacts with actin and modulates myosin kinetics by binding to the SH3 domain during the ATPase cycle.  相似文献   

20.
Conventional myosin is representative of biomolecular motors in which the hydrolysis of adenosine triphosphate (ATP) is coupled to large-scale structural transitions both in and remote from the active site. The mechanism that underlies such “mechanochemical coupling,” especially the causal relationship between hydrolysis and allosteric structural changes, has remained elusive despite extensive experimental and computational analyses. In this study, using combined quantum mechanical and molecular mechanical simulations and different conformations of the myosin motor domain, we provide evidence to support that regulation of ATP hydrolysis activity is not limited to residues in the immediate environment of the phosphate. Specifically, we illustrate that efficient hydrolysis of ATP depends not only on the proper orientation of the lytic water but also on the structural stability of several nearby residues, especially the Arg238-Glu459 salt bridge (the numbering of residues follows myosin II in Dictyostelium discoideum) and the water molecule that spans this salt bridge and the lytic water. More importantly, by comparing the hydrolysis activities in two motor conformations with very similar active-site (i.e., Switches I and II) configurations, which distinguished this work from our previous study, the results clearly indicate that the ability of these residues to perform crucial electrostatic stabilization relies on the configuration of residues in the nearby N-terminus of the relay helix and the “wedge loop.” Without the structural support from those motifs, residues in a closed active site in the post-rigor motor domain undergo subtle structural variations that lead to consistently higher calculated ATP hydrolysis barriers than in the pre-powerstroke state. In other words, starting from the post-rigor state, turning on the ATPase activity requires not only displacement of Switch II to close the active site but also structural transitions in the N-terminus of the relay helix and the “wedge loop,” which have been proposed previously to be ultimately coupled to the rotation of the converter subdomain 40 Å away.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号