首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic calcium concentration ([Ca2+]c) is fundamental for regulation of many cellular processes such metabolism, proliferation, muscle contraction, cell signaling and insulin secretion. In resting conditions, the sarco/endoplasmic reticulum (ER/SR) Ca2+ ATPase's (SERCA) transport Ca2+ from the cytosol to the ER or SR lumen, maintaining the resting [Ca2+]c about 25–100 nM. A reduced activity and expression of SERCA2 protein have been described in heart failure and diabetic cardiomyopathy, resulting in an altered Ca2+ handling and cardiac contractility. In the diabetic pancreas, there has been reported reduction in SERCA2b and SERCA3 expression in β-cells, resulting in diminished insulin secretion. Evidence obtained from different diabetes models has suggested a role for advanced glycation end products formation, oxidative stress and increased O-GlcNAcylation in the lowered SERCA2 expression observed in diabetic cardiomyopathy. However, the role of SERCA2 down-regulation in the pathophysiology of diabetes mellitus and diabetic cardiomyopathy is not yet well described. In this review, we make a comprehensive analysis of the current knowledge of the role of the SERCA pumps in the pathophysiology of insulin-dependent diabetes mellitus type 1 (TIDM) and type 2 (T2DM) in the heart and β-cells in the pancreas.  相似文献   

2.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

3.
Myocardial infarction in rats induced by occluding the left coronary artery for 4, 8 and 16 weeks has been shown to result in congestive heart failure (CHF) characterized by hypertrophy of the viable ventricular myocardial tissue. We have previously demonstrated a decreased calcium transport activity in the sarcoplasmic reticulum (SR) of post-myocardial infarction failing rat hearts. In this study we have measured the steady state levels of the cardiac SR Ca2+-pump ATPase (SERCA2) mRNA using Northern blot and slot blot analyses. The relative amounts of SERCA2 mRNA were decreased with respect to GAPDH mRNA and 28 S rRNA in experimental failing hearts at 4 and 8 weeks post myocardial infarction by about 20% whereas those at 16 weeks declined by about 35% of control values. The results obtained by Western blot analysis, revealed that the immunodetectable levels of SERCA2 protein in 8 and 16 weeks postinfarcted animals were decreased by about 20% and 30%, respectively. The left ventricular SR Ca2+-pump ATPase specific activity was depressed in the SR preparations of failing hearts as early as 4 weeks post myocardial infarction and declined by about 65% at 16 weeks compared to control. These results indicate that the depressed SR Ca2+-pump ATPase activity in CHF may partly be due to decreased steady state amounts of SERCA2 mRNA and SERCA2 protein in the failing myocardium.  相似文献   

4.
The Ca2+ content in the sarcoplasmic reticulum (SR) determines the amount of Ca2+ released, thereby regulating the magnitude of Ca2+ transient and contraction in cardiac muscle. The Ca2+ content in the SR is known to be regulated by two factors: the activity of the Ca2+ pump (SERCA) and Ca2+ leak through the ryanodine receptor (RyR). However, the direct relationship between the SERCA activity and Ca2+ leak has not been fully investigated in the heart. In the present study, we evaluated the role of the SERCA activity in Ca2+ leak from the SR using a novel saponin-skinned method combined with transgenic mouse models in which the SERCA activity was genetically modulated. In the SERCA overexpression mice, the Ca2+ uptake in the SR was significantly increased and the Ca2+ transient was markedly increased. However, Ca2+ leak from the SR did not change significantly. In mice with overexpression of a negative regulator of SERCA, sarcolipin, the Ca2+ uptake by the SR was significantly decreased and the Ca2+ transient was markedly decreased. Again, Ca2+ leak from the SR did not change significantly. In conclusion, the selective modulation of the SERCA activity modulates Ca2+ uptake, although it does not change Ca2+ leak from the SR.  相似文献   

5.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

6.
Sarcoplasmic reticulum contains the internal Ca2+ store in smooth muscle cells and its lumen appears to be a continuum that lacks diffusion barriers. Accordingly, the free luminal Ca2+ level is the same all throughout the SR; however, whether the Ca2+ buffer capacity is the same in all the SR is unknown. We have estimated indirectly the luminal Ca2+ buffer capacity of the SR by comparing the reduction in SR Ca2+ levels with the corresponding increase in [Ca2+]i during activation of either IP3Rs with carbachol or RyRs with caffeine, in smooth muscle cells from guinea pig urinary bladder. We have determined that carbachol-sensitive SR has a 2.4 times larger Ca2+ buffer capacity than caffeine-sensitive SR. Rapid inhibition of SERCA pumps with thapsigargin revealed that this pump activity accounts for 80% and 60% of the Ca2+ buffer capacities of carbachol- and caffeine-sensitive SR, respectively. Moreover, the Ca2+ buffer capacity of carbachol-sensitive SR was similar to caffeine-sensitive SR when SERCA pumps were inhibited. Similar rates of Ca2+ replenishments suggest similar levels of SERCA pump activities for either carbachol- or caffeine-sensitive SR. Paired pulses of caffeine, in conditions of low Ca2+ influx, indicate the relevance of luminal SR Ca2+ buffer capacity in the [Ca2+]i response. To further study the importance of luminal SR Ca2+ buffer capacity in the release process we used low levels of heparin to partially inhibit IP3Rs. This condition revealed carbachol-induced transient increase of luminal SR Ca2+ levels provided that SERCA pumps were active. It thus appears that SERCA pump activity keeps the luminal SR Ca2+-binding proteins in the high-capacity, low-affinity conformation, particularly for IP3R-mediated Ca2+ release.  相似文献   

7.
A mutation of Atp2a2 gene encoding the sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) causes Darier's disease in human and null mutation in one copy of Atp2a2 leads to a high incidence of squamous cell tumor in a mouse model. In SERCA2 heterozygote (SERCA2+/−) mice keratinocytes, mechanisms involved in partial depletion of SERCA2 gene and its related tumor induction have not been studied. In this study, we investigated Ca2+ signaling and differential gene expression in primary cultured keratinocytes from SERCA2+/− mice. SERCA2+/− keratinocytes showed reduced initial increases in intracellular concentration of calcium in response to ATP, a G-protein coupled receptor agonist, and higher store-operated Ca2+ entry with the treatment of thapsigargin, an inhibitor of SERCA, compared to wild type kerationcytes. Protein expressions of plasma membrane Ca2+ ATPases, NFATc1, phosphorylated ERK, JNK, and phospholipase γ1 were increased in SERCA2+/− keratinocytes. Using the gene fishing system, we first found in SERCA2+/− keratinocytes that gene level of tumor-associated calcium signal transducer 1, crystalline αB, procollagen XVIII α1, and nuclear factor I-B were increased. Expression of involucrin, a marker of keratinocyte differentiation, was decreased in SERCA2+/− keratinocytes. These results suggest that the alterations of Ca2+ signaling by SERCA2 haploinsufficiency alternate the gene expression of tumor induction and differentiation in keratinocytes.  相似文献   

8.
NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one) is widely used as a large-conductance Ca2+-activated K+ (BKCa) channel opener. It was previously reported that activation of BKCa channels by NS1619 could protect the cardiac muscle against ischaemia and reperfusion injury. This study reports the effects of NS1619 on intracellular Ca2+ homeostasis in H9C2 and C2C12 cells as well as its molecular mechanism of action. The effects of NS1619 on Ca2+ homeostasis in C2C12 and H9C2 cells were assessed using the Fura-2 fluorescence method. Ca2+ uptake by sarcoplasmic reticulum (SR) vesicles isolated from rat skeletal muscles and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity were measured. The effect of NS1619 on the isometric force of papillary muscle contraction in the guinea pig heart was also examined. H9C2 and C2C12 cells treated with NS1619 released Ca2+ from internal stores in a concentration-dependent manner. Ca2+ accumulation by the SR vesicles was inhibited by NS1619 treatment. NS1619 also decreased the activity of SERCA derived from rat skeletal muscle. The calcium release from cell internal stores and inhibition of SERCA by NS1619 are pH dependent. Finally, NS1619 had a profound effect on the isometric force of papillary muscle contraction in the guinea pig heart. These results indicate that NS1619 is a potent modulator of the intracellular Ca2+ concentration in H9C2 and C1C12 cells due to its interaction with SRs. The primary target of NS1619 is SERCA, which is located in SR vesicles. The effect of NS1619-mediated SERCA inhibition on cytoprotective processes should be considered.  相似文献   

9.
Electrical stimulation of the rat heart sarcolemmal membranes with a square wave current was found to increase Ca2+-ATPase activity. This activation of the enzyme was dependent upon the voltage of the electric current, frequency of stimulation and duration of stimulation of the sarcolemmal membranes. The increase in ca2+-ATPase was reversible upon terminating the electrical stimulation. The activation of sarcolemmal Ca2+-ATPase due to electrical stimulation was markedly depressed when the reaction was carried out at high pH (7.8 to 8.2), low pH (6.6 to 7.0), high temperatures (45 to 50°C) and low temperatures (17 to 25°C) of the incubation medium. Ca2+-antagonists, verapamil and D-600, unlike other types of inhibitors such as propranolol and ouabain, were found to reduce the activation of sarcolemmal Ca2+-ATPase by electrical stimulation. These results support the view that Ca2+/Mg2+ ATPase may be involved in the gating mechanism for opening Ca2+-channels in the sarcolemmal membrane upon excitation of the cardiac muscle.  相似文献   

10.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation.  相似文献   

11.
Oxidized low density lipoprotein (oxLDL) has been identified as a potentially important atherogenic factor. Atherosclerosis is characterized by the accumulation of lipid and calcium in the vascular wall. OxLDL plays a significant role in altering calcium homeostasis within different cell types. In our previous study, chronic treatment of vascular smooth muscle cells (VSMC) with oxLDL depressed Ca2+ i homeostasis and altered two Ca2+ release mechanisms in these cells (IP3 and ryanodine sensitive channels). The purpose of the present study was to further define the effects of chronic treatment with oxLDL on the smooth muscle sarcoplasmic reticulum (SR) Ca2+ pump. One of the primary Ca2+ uptake mechanisms in VSMC is through the SERCA2 ATPase calcium pump in the sarcoplasmic reticulum. VSMC were chronically treated with 0.005-0.1 mg/ml oxLDL for up to 6 days in culture. Cells treated with oxLDL showed a significant increase in the total SERCA2 ATPase content. These changes were observed on both Western blot and immunocytochemical analysis. This increase in SERCA2 ATPase is in striking contrast to a significant decrease in the density of IP3 and ryanodine receptors in VSMC as the result of chronic treatment with oxLDL. This response may suggest a specific adaptive mechanism that the pump undergoes to attempt to maintain Ca2+ homeostasis in VSMC chronically exposed to atherogenic oxLDL.  相似文献   

12.
This work investigated the role of Ca2+ mobilization and heterotrimeric G protein activation in mediating angiotensin II-dependent tyrosine phosphorylation signaling patterns. We demonstrate that the predominant, angiotensin II-dependent, tyrosine phosphorylation signaling patterns seen in vascular smooth muscle cells are blocked by the intracellular Ca2+ chelator BAPTA-AM, but not by the Ca2+ channel blocker verapamil. Activation of heterotrimeric G proteins with NaF resulted in a divergent signaling effect; NaF treatment was sufficient to increase tyrosine phosphorylation levels of some proteins independent of angiotensin II treatment. In the same cells, NaF alone had no effect on other cellular proteins, but greatly potentiated the ability of angiotensin II to increase the tyrosine phosphorylation levels of these proteins. Two proteins identified in these studies were paxillin and Jak2. We found that NaF treatment alone, independent of angiotensin II stimulation, was sufficient to increase the tyrosine phosphorylation levels of paxillin. Furthermore, the ability of either NaF and/or angiotensin II to increase tyrosine phosphorylation levels of paxillin is critically dependent on intracellular Ca2+. In contrast, angiotensin II-mediated Jak2 tyrosine phosphorylation was independent of intracellular Ca2+ mobilization and extracellular Ca2+ entry. Thus, our data suggest that angiotensin II-dependent tyrosine phosphorylation signaling cascades are mediated through a diverse set of signaling pathways that are partially dependent on Ca2+ mobilization and heterotrimeric G protein activation.  相似文献   

13.
Fedirko  N.  Vats  Yu.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2004,36(3):169-173
In a rat model of streptozotocin (STZ)-induced diabetes, we earlier showed that under these conditions the concentration of free cytosolic Ca2+ in input neurons of the nociceptive system increases, Ca2+ signals are prolonged, while Ca2+ release from intracellular calcium stores decreases. The aim of our study was to test the hypothesis that changes in the activities of Ca2+,Mg2+-ATPases of the endoplasmic reticulum (SERCA) and plasmalemma (PMCA) could be responsible for diabetes-induced disorders of calcium homeostasis in nociceptive neurons. We measured the Ca2+,Mg2+-ATPase activities in microsomal fractions obtained from tissues of the dorsal root ganglia (DRG) and spinal dorsal horn (DH) of control rats and rats with experimentally induced diabetes. The integral specific Ca2+,Mg2+-ATPase activity in microsomes from diabetic rats was lower than that in the control group. The activity of SERCA in samples of DRG and DH of diabetic rats was reduced by 50 ± 8 and 48 ± 12%, respectively, as compared with the control (P < 0.01). At the same time, the activity of PMCA decreased by 63 ± 6% in DRG and by 60 ± 9% in DH samples (P < 0.01). We conclude that diabetic polyneuropathy is associated with the reduction of the rate of recovery of the Ca2+ level in the cytosol of DRG and DH neurons due to down-regulation of the SERCA and PMCA activities.  相似文献   

14.
In Xenopus laevis oocytes, overexpression of calreticulin suppresses inositol 1,4,5-trisphosphate-induced Ca2+ oscillations in a manner consistent with inhibition of Ca2+ uptake into the endoplasmic reticulum. Here we report that the alternatively spliced isoforms of the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA)2 gene display differential Ca2+ wave properties and sensitivity to modulation by calreticulin. We demonstrate by glucosidase inhibition and site-directed mutagenesis that a putative glycosylated residue (N1036) in SERCA2b is critical in determining both the selective targeting of calreticulin to SERCA2b and isoform functional differences. Calreticulin belongs to a novel class of lectin ER chaperones that modulate immature protein folding. In addition to this role, we suggest that these chaperones dynamically modulate the conformation of mature glycoproteins, thereby affecting their function.  相似文献   

15.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The intracellular concentration of free Ca2+ also changes rhythmically in association with the rhythmic contraction of myocytes (Ca2+ oscillation). Both the contraction and Ca2+ oscillatory rhythms are synchronized among myocytes, and intercellular communication via gap junctions has been considered primarily responsible for the synchronization. However, a recent study has demonstrated that intercellular communication via extracellular ATP‐purinoceptor signaling is also involved in the intercellular synchronization of intracellular Ca2+ oscillation. In this study, we aim to elucidate whether the concentration of extracellular ATP changes cyclically and contributes to the intercellular synchronization of Ca2+ oscillation among myocytes. In almost all the cultured cardiac myocytes at four days in vitro (4 DIV), intracellular Ca2+ oscillations were synchronized with each other. The simultaneous measurement of the concentration of extracellular ATP and intracellular Ca2+ revealed the extracellular concentration of ATP actually oscillated concurrently with the intracellular Ca2+ oscillation. In addition, power spectrum and cross‐correlation analyses suggested that the treatment of cultured cardiac myocytes with suramin, a blocker of P2 purinoceptors, resulted in the asynchronization of Ca2+ oscillatory rhythms among cardiac myocytes. Treatment with suramin also resulted in a significant decrease in the amplitudes of the cyclic changes in both intracellular Ca2+ and extracellular ATP. Taken together, the present study demonstrated the possibility that the concentration of extracellular ATP changes cyclically in association with intracellular Ca2+, contributing to the intercellular synchronization of Ca2+ oscillation among cultured cardiac myocytes.  相似文献   

16.
Store-operated Ca2+ entry (SOCE) is a widespread mechanism to elevate the intracellular Ca2+ concentrations and stimulate downstream signaling pathways affecting proliferation, secretion, differentiation and death in different cell types. In immune cells, immune receptor stimulation induces intracellular Ca2+ store depletion that subsequently activates Ca2+-release-activated-Ca2+ (CRAC) channels, a prototype of store-operated Ca2+ (SOC) channels. CRAC channel opening leads to activation of diverse downstream signaling pathways affecting proliferation, differentiation, cytokine production and cell death. Recent identification of STIM1 as the endoplasmic reticulum Ca2+ sensor and Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tools to dissect the mechanism of activation and regulation of CRAC channels. In this review, we discuss the recent advances in understanding the associating partners and posttranslational modifications of Orai1 and STIM1 proteins that regulate diverse aspects of CRAC channel function.  相似文献   

17.
Abstract

Calcium transients play an essential role in cardiomyocytes and electromagnetic fields (EMF) and affect intracellular calcium levels in many types of cells. Effects of EMF on intracellular calcium transients in cardiomyocytes are not well studied. The aim of this study was to assess whether extremely low frequency electromagnetic fields (ELF-EMF) could affect intracellular calcium transients in cardiomyocytes. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to rectangular-wave pulsed ELF-EMF at four different frequencies (15?Hz, 50?Hz, 75?Hz and 100?Hz) and at a flux density of 2?mT. Intracellular calcium concentration ([Ca2+]i) was measured using Fura-2/AM and spectrofluorometry. Perfusion of cardiomyocytes with a high concentration of caffeine (10?mM) was carried out to verify the function of the cardiac Na+/Ca2+ exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca2+-ATPase (SERCA2a). The results showed that ELF-EMF enhanced the activities of NCX and SERCA2a, increased [Ca2+]i baseline level and frequency of calcium transients in cardiomyocytes and decreased the amplitude of calcium transients and calcium level in sarcoplasmic reticulum. These results indicated that ELF-EMF can regulate calcium-associated activities in cardiomyocytes.  相似文献   

18.
Ca microdomains in smooth muscle   总被引:1,自引:0,他引:1  
In smooth muscle, Ca2+ controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca2+ to perform these multiple functions is the cell's ability to localize Ca2+ signals to certain regions by creating high local concentrations of Ca2+ (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca2+ influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca2+ store. A single Ca2+ channel can create a microdomain of several micromolar near (200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca2+] and the rapid rates of decline target Ca2+ signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca2+ by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca2+. In this review, the generation of microdomains arising from Ca2+ influx across the plasma membrane and the release of the ion from the SR Ca2+ store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.  相似文献   

19.
The sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca2+ transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca2+ channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (ΔHcal) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg2+ or ruthenium red, conditions that close the ryanodine Ca2+ channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the ΔHcal values of ATP hydrolysis increased significantly. Neither Mg2+ nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the ΔHcal of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca2+ channel is opened or closed.  相似文献   

20.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号