首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A long-standing question in neurotrophin signal transduction is whether heteromeric TrkA-p75NTR complexes possess signaling capabilities that are significantly different from homo-oligomeric TrkA or p75NTR alone. To address this issue, various combinations of transfected PC12 cells expressing a platelet-derived growth factor receptor-TrkA chimera and the p75NTR-selective nerve growth factor mutant (Delta9/13 NGF) were utilized to selectively stimulate TrkA or p75NTR signaling, respectively. The contribution of individual and combined receptor effects was analyzed in terms of downstream signaling and certain end points. The results suggest two unique functions for the high affinity heteromeric NGF receptor site: (a) integration of both the MAPK and Akt pathways in the production of NGF-induced neurite outgrowth, and (b) rapid and sustained activation of the Akt pathway, with consequent long term cellular survival. Whereas activation of TrkA signaling is sufficient for eliciting neurite outgrowth in PC12 cells, signaling through p75NTR plays a modulatory role, especially in the increased formation of fine, synaptic "bouton-like" structures, in which both TrkA and p75NTR appear to co-localize. In addition, a new interaction in the TrkA/p75NTR heteromeric receptor signal transduction network was revealed, namely that NGF-induced activation of the MAPK pathway appears to inhibit the parallel NGF-induced Akt pathway.  相似文献   

2.
Nerve Growth Factor (NGF) is a neurotrophic factor that prevents apoptosis in neuronal progenitor cells. In rat pheochromocytoma (PC12) cells, tyrosine kinase A receptor (TrkA) mediates neurotrophic or protective effects, while p75 neurotrophin receptor (p75NTR) functions as a death receptor. We have determined whether TrkA mediates any cytotoxic effect. Following serum deprivation, TrkA expression increased 2.2-fold and apoptosis began with expression of Bax proapoptotic protein. Application of NGF halved cell viability but this was reversed by K252a, the TrkA inhibitor. These results confirmed the paradoxical cytotoxic effect of neurotrophic NGF via TrkA in PC12 cells following serum deprivation.  相似文献   

3.
β-amyloid precursor protein (APP) is a key factor in Alzheimer''s disease (AD) but its physiological function is largely undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF), which plays a crucial role in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR. Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Aβ-induced neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced downstream signaling pathways for neuronal survival and differentiation.  相似文献   

4.
Nerve growth factor (NGF), the prototypic member of the neurotrophin family of growth factors, exerts its action via two receptors, P75NTR and TrkA, the expression of which varies at the cell surface of neuroblastoma cells (SH-SY5Y cells) in a cycle phase-specific manner. NGF was pro-apoptotic on growing cells expressing preferentially P75NTR and exhibited a potent anti-apoptotic effect on quiescent cells, when TrkA was prevalent at the cell surface, showing that NGF can have a dual action on SH-SY5Y cells depending on the relative cell surface expression of TrkA and P75NTR. The pro-apoptotic activity of NGF but not its anti-apoptotic activity was abrogated by an antibody against the extracellular domain of P75NTR and in cell isolated from P75NTR knock-out mice indicating that NGF exhibits a proapoptotic activity via P75NTR exclusively. On the other hand, we showed that the anti-apoptotic activity of NGF was specifically mediated by an interaction with TrkA with no contribution of P75NTR, as demonstrated on SK-N-BE cells transfected with TrkA in which NGF was a potent anti-apoptotic compound but did not exhibit any pro-apoptotic activity. These results support the hypothesis that the survival response to NGF depends on its binding to TrkA without any involvement of P75NTR which in turn selectively mediates the pro-apoptotic activity of NGF with no contribution of TrkA and show that, depending on the growth state of the cells, NGF exhibits dual pro- or anti-apoptotic properties via P75NTR and TrkA, respectively.  相似文献   

5.
The TrkA receptor is activated primarily by nerve growth factor (NGF), but it can also be activated by high concentrations of neurotrophin 3 (NT-3). The pan-neurotrophin receptor p75(NTR) strongly inhibits activation of TrkA by NT-3 but not by NGF. To examine the role of p75(NTR) in regulating the specificity of TrkA signaling, we expressed both receptors in Xenopus oocytes. Application of NGF or NT-3 to oocytes expressing TrkA alone resulted in efflux of (45)Ca(2+) by a phospholipase C-gamma-dependent pathway. Coexpression of p75(NTR) with TrkA inhibited (45)Ca(2+) efflux in response to NT-3 but not NGF. The inhibitory effect on NT-3 activation of TrkA increased with increasing expression of p75(NTR). Coexpression of a truncated p75(NTR) receptor lacking all but the first 9 amino acids of the cytoplasmic domain inhibited NT-3 stimulation of (45)Ca(2+) efflux, whereas coexpression of an epidermal growth factor receptor/p75(NTR) chimera (extracellular domain of epidermal growth factor receptor with transmembrane and cytoplasmic domains of p75(NTR)) did not inhibit NT-3 signaling through TrkA. These studies demonstrated that the extracellular domain of p75(NTR) was necessary to inhibit NT-3 signaling through TrkA. Remarkably, p75(NTR) binding to NT-3 was not required to prevent signaling through TrkA, since occupying p75(NTR) with brain-derived neurotrophic factor or anti-p75 antibody (REX) did not rescue the ability of NT-3 to activate (45)Ca(2+) efflux. These data suggested a physical association between TrkA and p75(NTR). Documenting this physical interaction, we showed that p75(NTR) and TrkA could be coimmunoprecipitated from Xenopus oocytes. Our results suggest that the interaction of these two receptors on the cell surface mediated the inhibition of NT-3-activated signaling through TrkA.  相似文献   

6.
7.
A growing body of evidence indicates a close relationship between tyrosine kinase receptor trafficking and signaling. Biochemical and molecular analyses of the expression, fate, and kinetics of membrane trafficking of the nerve growth factor (NGF) receptor TrkA were performed in PC12 cells. Pulse-chase experiments indicate that TrkA is synthesized as a 110-kDa N-glycosylated precursor that leads to the mature 140-kDa form of the receptor with a half-life of conversion of approximately 24 +/- 0.5 min. Neuraminidase digestion shows that modification of the carbohydrate moiety of the receptor by sialylation occurs during maturation. The 140-kDa form is rapidly translocated to the cell surface as assessed by cell surface biotinylation performed on intact PC12 cells. Mature receptor half-life is approximately 138 +/- 4 min and is shortened to 86 +/- 8 min by NGF treatment. Flow cytometric analysis indicates that NGF induces clearing of this receptor from the cell surface within minutes of treatment. The addition of NGF decreases the half-life of cell surface gp140(TrkA) from 100 to 35 min and leads to enhanced lysosomal degradation of the receptor. The process of NGF-induced TrkA internalization is clearly affected by interfering with ligand binding to p75(NTR). An analysis of receptor activation kinetics also shows that receptor signaling primarily takes place from an intracellular location. Together, these data show that the primary effect of NGF treatment is a p75(NTR)-modulated decrease in TrkA transit time at the cell surface.  相似文献   

8.
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.  相似文献   

9.
Nerve growth factor (NGF) is the ligand for two unrelated cellular receptors, TrkA and p75(NTR), and acts as a mediator in the development and maintenance of the mammalian nervous system. Signaling through TrkA kinase domains promotes neuronal survival, whereas activation of the p75(NTR) "death domains" induces apoptosis under correct physiological conditions. However, co-expression of these receptors leads to enhanced neuronal survival upon NGF stimulation, possibly through a ternary p75(NTR) x NGF x TrkA complex. We have expressed human p75(NTR) ligand binding domain as a secreted glycosylated protein in Trichoplusia ni cells. Following assembly and purification of soluble p75(NTR) x NGF complexes, mass spectrometry, analytical ultracentrifugation, and solution x-ray scattering measurements are indicative of 2:2 stoichiometry, which implies a symmetric complex. Molecular models of the 2:2 p75(NTR) x NGF complex based on these data are not consistent with the further assembly of either symmetric (2:2:2) or asymmetric (2:2:1) ternary p75(NTR) x NGF x TrkA complexes.  相似文献   

10.
The mechanisms employed by the p75 neurotrophin receptor (p75NTR) to mediate neurotrophin-dependent apoptosis are poorly defined. Two-hybrid analyses were used to identify proteins involved in p75NTR apoptotic signaling, and a p75NTR binding partner termed NRAGE (for neurotrophin receptor-interacting MAGE homolog) was identified. NRAGE binds p75NTR in vitro and in vivo, and NRAGE associates with the plasma membrane when NGF is bound to p75NTR. NRAGE blocks the physical association of p75NTR with TrkA, and, conversely, TrkA overexpression eliminates NRAGE-mediated NGF-dependent death, indicating that interactions of NRAGE or TrkA with p75NTR are functionally and physically exclusive. NRAGE overexpression facilitates cell cycle arrest and permits NGF-dependent apoptosis within sympathetic neuron precursors cells. Our results show that NRAGE contributes to p75NTR-dependent cell death and suggest novel functions for MAGE family proteins.  相似文献   

11.
Nerve growth factor (NGF) is a member of the neurotrophins, which are important regulators of embryonic development and adult function in the vertebrate nervous systems. The signaling elicited by NGF regulates diverse activities, including survival, axon growth, and synaptic plasticity. NGF action is mediated by engagement with two structurally unrelated transmembrane receptors, p75(NTR) and TrkA, which are co-expressed in a variety of cells. The functional interactions of these receptors have been widely demonstrated and include complex formation, convergence of signaling pathways, and indirect interaction through adaptor proteins. Each domain of the receptors was shown to be important for the formation of TrkA and p75(NTR) complexes, but only the intramembrane and transmembrane domains seemed to be crucial for the creation of high-affinity binding sites. However, whether these occur through a physical association of the receptors is unclear. In the present work, we demonstrate by F?rster resonance energy transfer that p75(NTR) and TrkA are physically associated through their intracellular (IC) domains and that this interaction occurs predominantly at the cell membrane and prior to NGF stimulation. Our data suggest that there is a pool of receptors dimerized before NGF stimulus, which could contribute to the high-affinity binding sites. We modeled the three-dimensional structure of the TrkA IC domain by homology modeling, and with this and the NMR-resolved structure of p75(NTR), we modeled the heterodimerization of TrkA and p75(NTR) by docking methods and molecular dynamics. These models, together with the results obtained by F?rster resonance energy transfer, provide structural insights into the receptors' physical association.  相似文献   

12.
Nerve growth factor (NGF) promotes cell survival via binding to the tyrosine kinase receptor A (TrkA). Its precursor, proNGF, binds to p75(NTR) and sortilin receptors to initiate apoptosis. Current disagreement exists over whether proNGF acts neurotrophically following binding to TrkA. As in Alzheimer's disease the levels of proNGF increase and TrkA decrease, it is important to clarify the properties of proNGF. Here, wild-type and cleavage-resistant mutated forms (M) of proNGF were engineered and their binding characteristics determined. M-proNGF and NGF bound to p75(NTR) with similar affinities, whilst M-proNGF had a lower affinity than NGF for TrkA. M-proNGF behaved neurotrophically, albeit less effectively than NGF. M-proNGF addition resulted in phosphorylation of TrkA and ERK1/2, and in PC12 cells elicited neurite outgrowth and supported cell survival. Conversely, M-proNGF addition to cultured cortical neurons initiated caspase 3 cleavage. Importantly, these biological effects were shown to be mediated by unprocessed M-proNGF. Surprisingly, binding of the pro region alone to TrkA, at a site other than that of NGF, caused TrkA and ERK1/2 phosphorylation. Our data show that M-proNGF stimulates TrkA to a lesser degree than NGF, suggesting that in Alzheimer brain the increased proNGF : NGF and p75(NTR) : TrkA ratios may permit apoptotic effects to predominate over neurotrophic effects.  相似文献   

13.
Abstract: Nerve growth factor (NGF) binds to two distinct cell surface receptors, TrkA, which is a receptor tyrosine kinase, and p75NGFR, whose role in NGF-induced signal transduction remains unclear. We have found that human neuroblastoma IMR-32 cells express TrkA, but p75NGFR expression was not detectable in these cells by northern blot analysis, immunoblotting, or chemical crosslinking experiments. Despite the lack of p75NGFR expression, subnanomolar concentrations of recombinant human NGF induced neurite outgrowth, tyrosine phosphorylation, and immediate early gene expression in these cells. These results strongly suggest that NGF-induced neuronal differentiation in IMR-32 cells is initiated through TrkA in the absence of p75NGFR. Thus, IMR-32 cells may provide a model for studying neurotrophic effects of NGF on adult striatal cholinergic neurons, which also lack p75NGFR expression.  相似文献   

14.
Nerve growth factor (NGF) is an important neuronal survival factor, especially during development. Optimal sensitivity of the survival response to NGF requires the presence of TrkA and the p75 neurotrophin receptor, p75(NTR). Signalling pathways used by TrkA are well established, but the mechanisms by which p75(NTR) enhances NGF signalling remain far from clear. A prevalent view is that p75(NTR) and TrkA combine to form a high-affinity receptor, but definitive evidence for this is still lacking. We therefore investigated the possibility that p75(NTR) and TrkA interact via their signal transduction pathways. Using antisense techniques to down-regulate p75(NTR) and TrkA, we found that p75(NTR) specifically enhanced phosphorylation of the 46- and 52-kDa isoforms of Shc during nerve growth factor-induced TrkA activation. p75(NTR) did not enhance tyrosine phosphorylation of other TrkA substrates. Serine phosphorylation of Akt, downstream of Shc activation, was also p75(NTR)-dependent. We consistently detected co-immunoprecipitation of p75(NTR) and Shc. These data indicate that p75(NTR) interacts with Shc physically, via a binding interaction, and functionally, by assisting its phosphorylation. Whilst providing evidence that p75(NTR) augments TrkA signal transduction, these results do not preclude the presence of a p75(NTR)-TrkA high-affinity NGF receptor.  相似文献   

15.
Nerve growth factor (NGF) binding to its receptors TrkA and p75(NTR) enhances the survival, differentiation, and maintenance of neurons. Recent studies have suggested that NGF receptor activation may occur in caveolae or caveolae-like membranes (CLM). This is an intriguing possibility because caveolae have been shown to contain many of the signaling intermediates in the TrkA signaling cascade. To examine the membrane localization of TrkA and p75(NTR), we isolated caveolae from 3T3-TrkA-p75 cells and CLM from PC12 cells. Immunoblot analysis showed that TrkA and p75(NTR) were enriched about 13- and 25-fold, respectively, in caveolae and CLM. Binding and cross-linking studies demonstrated that the NGF binding to both TrkA and p75(NTR) was considerably enriched in CLM and that about 90% of high affinity binding to TrkA was present in CLM. When PC12 cells were treated with NGF, virtually all activated (i.e. tyrosine phosphorylated) TrkA was found in the CLM. Remarkably, in NGF-treated cells, it was only in CLM that activated TrkA was coimmunoprecipitated with phosphorylated Shc and PLCgamma. These results document a signaling role for TrkA in CLM and suggest that both TrkA and p75(NTR) signaling are initiated from these membranes.  相似文献   

16.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   

17.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

18.
Neurotrophins are target-derived soluble polypeptides required for neuronal survival. Binding of neurotrophins to Trk receptor tyrosine kinases initiate signaling cascades that promote cell survival and differentiation. All family members bind to another receptor (p75NTR), which belongs to the tumor necrosis factor superfamily. Hence, nerve growth factor (NGF) and related trophic factors are unique in that two separate receptor types are utilized. Although the biological function of p75NTR has been elusive, it has been suggested to mediate apoptosis of developing neurons in the absence of Trk receptors. This presents a tantalizing paradigm, in which life-death decisions of cells are dependent upon the expression and action of two different receptors with distinctive signaling mechanisms. In the presence of TrkA receptors, p75 can participate in the formation of high affinity binding sites and enhanced NGF responsiveness leading to a survival signal. In the absence of TrkA receptors, p75 can generate, in only specific cell populations, a death signal. Here we discuss the unique features and implications of this unusual signal transduction system.  相似文献   

19.
20.
Nerve growth factor (NGF) is a peptide displaying multiple cholinotropic activities. The aim of this work was to explain mechanisms of the positive and negative effects of NGF on phenotypic properties and viability of cholinergic cells. To discriminate these effects we used two p75NTR receptor-positive lines of cholinergic neuroblastoma cells, SN56 and T17 that are devoid of or express high affinity NGF (TrkA) receptors, respectively. cAMP and retinoic acid caused differentiation of both cell lines. In addition to the morphologic maturation, the increase of choline acetyltransferase activity, acetylcholine, Ca and cytoplasmic acetyl-CoA levels and decrease of mitochondrial acetyl-CoA and cell viability were observed. NGF caused similar effects in non-differentiated T17 cells but had no influence on non-differentiated SN56 cells. On the contrary, in both cAMP/all-trans-retinoic acid (RA) differentiated cell lines, NGF resulted in a similar suppression of cholinergic phenotype along with an increase of mitochondrial acetyl-CoA and cell susceptibility to nitric oxide and amyloid-beta25-35. These effects of NGF were prevented by an antibody against the p75NTR receptor. Data indicate that: (i) positive cholinotrophic effects of NGF required activation of both TrkA and p75NTR receptors; (ii) cAMP/RA-evoked differentiation inhibited NGF effects mediated by TrkA receptors and activated its p75NTR-dependent suppressing influences and (iii) a differentiation-evoked decrease of mitochondrial acetyl-CoA and an elevation of mitochondrial Ca could augment impairment of cholinergic neurons by neurotoxic signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号