首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have implicated endoplasmic reticulum (ER) stress in insulin resistance associated with caloric excess. In mice placed on a 3-day high fat diet, we find augmented eIF2α signaling, together with hepatic lipid accumulation and insulin resistance. To clarify the role of the liver ER stress-dependent phospho-eIF2α (eIF2α-P) pathway in response to acute caloric excess on liver and muscle glucose and lipid metabolism, we studied transgenic mice in which the hepatic ER stress-dependent eIF2α-P pathway was inhibited by overexpressing a constitutively active C-terminal fragment of GADD34/PPP1R15a, a regulatory subunit of phosphatase that terminates ER stress signaling by phospho-eIF2α. Inhibition of the eIF2α-P signaling in liver led to a decrease in hepatic glucose production in the basal and clamped state, which could be attributed to reduced gluconeogenic gene expression, resulting in reduced basal plasma glucose concentrations. Surprisingly, hepatic eIF2α inhibition also impaired insulin-stimulated muscle and adipose tissue insulin sensitivity. This latter effect could be attributed at least in part by an increase in circulating IGFBP-3 levels in the transgenic animals. In addition, infusion of insulin during a hyperinsulinemic-euglycemic clamp induced conspicuous ER stress in the 3-day high fat diet-fed mice, which was aggravated through continuous dephosphorylation of eIF2α. Together, these data imply that the hepatic ER stress eIF2α signaling pathway affects hepatic glucose production without altering hepatic insulin sensitivity. Moreover, hepatic ER stress-dependent eIF2α-P signaling is implicated in an unanticipated cross-talk between the liver and peripheral organs to influence insulin sensitivity, probably via IGFBP-3. Finally, eIF2α is crucial for proper resolution of insulin-induced ER stress.  相似文献   

2.
Chronic low grade inflammation is closely linked to obesity-associated insulin resistance. To examine how administration of the anti-inflammatory compound indomethacin, a general cyclooxygenase inhibitor, affected obesity development and insulin sensitivity, we fed obesity-prone male C57BL/6J mice a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose output was significantly increased. Indomethacin had no effect on adipose tissue mass, glucose tolerance, or GSIS when included in a regular diet. Indomethacin administration to obese mice did not reduce adipose tissue mass, and the compensatory increase in GSIS observed in obese mice was not affected by treatment with indomethacin. We demonstrate that indomethacin did not inhibit GSIS per se, but activation of GPR40 in the presence of indomethacin inhibited glucose-dependent insulin secretion in MIN6 cells. We conclude that constitutive high hepatic glucose output combined with impaired GSIS in response to activation of GPR40-dependent signaling in the HF/HS+INDO-fed mice contributed to the impaired glucose clearance during a glucose challenge and that the resulting lower levels of plasma insulin prevented the obesogenic action of the HF/HS diet.  相似文献   

3.
Hepatic steatosis is the accumulation of excess fat in the liver. Recently, hepatic steatosis has become more important because it occurs in the patients with obesity, type 2 diabetes, and hyperlipidemia and is associated with endoplasmic reticulum (ER) stress and insulin resistance. C-C chemokine receptor 2 (CCR2) inhibitor has been reported to improve inflammation and glucose intolerance in diabetes, but its mechanisms remained unknown in hepatic steatosis. We examined whether CCR2 inhibitor improves ER stress-induced hepatic steatosis in type 2 diabetic mice. In this study, db/db and db/m (n = 9) mice were fed CCR2 inhibitor (2 mg/kg/day) for 9 weeks. In diabetic mice, CCR2 inhibitor decreased plasma and hepatic triglycerides levels and improved insulin sensitivity. Moreover, CCR2 inhibitor treatment decreased ER stress markers (e.g., BiP, ATF4, CHOP, and XBP-1) and inflammatory cytokines (e.g., TNFα, IL-6, and MCP-1) while increasing markers of mitochondrial biogenesis (e.g., PGC-1α, Tfam, and COX1) in the liver. We suggest that CCR2 inhibitor may ameliorate hepatic steatosis by reducing ER stress and inflammation in type 2 diabetes mellitus.  相似文献   

4.
Many studies have investigated the effect of crude tomato peel in vivo, but no studies have determined the dose-effect of dry tomato peel (DTP) on glucose intolerance, insulin resistance, and atherogenic dyslipidemia induced by a high-saturated-fat (HSF) diet in vivo. The aim of this study was to investigate the effects of different doses of DTP on the levels of oxidative stress in mice fed an HSF and cholesterol-rich diet for 12 weeks. The main outcomes are glucose and insulin tolerance, plasma lipids, and hepatic steatosis and inflammation. BALB/c male mice (n=40) (8 weeks old, weighing 22.2±1.0 g) were divided into four treatment groups (10 mice/group): (a) high-fat control diet (HF Ctrl), which contains sunflower oil as a sole source of fat; (b) HSF/high-cholesterol (HC) diet; (c) HSF/HC diet supplemented with 9% DTP and (d) HSF/HC diet supplemented with 17% DTP. The HSF/HC diet significantly increased body weight gain, adipose tissue weight, fasting plasma glucose, fasting plasma insulin and lipid peroxidation and caused the development of liver steatosis and inflammation. Supplementation with DTP increased plasma lycopene concentration and reduced the development of indicators of metabolic syndrome, with no consistent effect of the DTP dose. Hepatic steatosis and inflammation were not reversed with DTP supplementation. Among mice fed the HSF/HC diet, DTP supplementation appears to have a beneficial effect on insulin resistance, which confirms the antiatherogenic effect of DTP.  相似文献   

5.
Progranulin (PGRN) has recently emerged as an important regulator for glucose metabolism and insulin sensitivity. However, the direct effects of PGRN in vivo and the underlying mechanisms between PGRN and impaired insulin sensitivity are not fully understood. In this study, mice treated with PGRN for 21 d exhibited the impaired glucose tolerance and insulin sensitivity, remarkable ER stress as well as attenuated insulin signaling in liver and adipose tissue but not in skeletal muscle. Furthermore, treatment of mice with phenyl butyric acid (PBA), a chemical chaperone alleviating ER stress, resulted in a significant restoration of systemic insulin sensitivity and recovery of insulin signaling induced by PGRN. Consistent with these findings in vivo, we also observed that PGRN treatment induced ER stress, impaired insulin signaling in cultured hepatocytes and adipocytes, with such effects being partially nullified by blockade of PERK. Whereas PGRN-deficient hepatocytes and adipocytes were more refractory to palmitate-induced insulin resistance, indicating the causative role of the PERK-eIF2α axis of the ER stress response in action of PGRN. Collectively, our findings supported the notion that PGRN is a key regulator of insulin resistance and that PGRN may mediate its effects, at least in part, by inducing ER stress via the PERK-eIF2α dependent pathway.  相似文献   

6.
Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1Ser307 phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1Ser307Ala mice and controls. Our results demonstrate that blockade of IRS1Ser307 phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance.  相似文献   

7.
Excessive lipid deposition, oxidative stress and inflammation in liver tissues are regarded as crucial inducers of nonalcoholic steatohepatitis (NASH), which is the most frequent chronic liver disease and closely related to obesity and insulin resistance. In this work, the preventive and therapeutic effects of Citrus reticulata Blanco (Jizigan) peel extract (JZE) on NASH induced by high fat (HF) diet and methionine choline-deficient (MCD) diet in C57BL/6 mice were investigated. We found that daily supplementation of JZE with an HF diet effectively ameliorated glucose tolerance and insulin resistance. In addition, the key indexes of lipid profiles, oxidative stress, hepatic steatosis and inflammatory factors were also ameliorated in both NASH mouse models. Furthermore, JZE treatment activated nuclear factor erythroid-2-related factor 2 (Nrf2) in the livers of diet- induced NASH mice. Our study suggests that JZE might alleviate NASH via the activation of Nrf2 signaling and that citrus Jizigan could be used as a dietary therapy for NASH and related metabolic syndrome.  相似文献   

8.
Low-intensity electrical current (or mild electrical stimulation; MES) influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72) alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS) to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration) together with HS at 42°C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS) and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V)+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor β subunit (IRβ) and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12–15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway.  相似文献   

9.
The development of insulin resistance in the obese is associated with chronic, low‐grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin‐1 receptor knockout (IL‐1RI?/?) mice, which are protected against diet‐induced insulin resistance. Mice were fed a high‐fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL‐1RI?/? mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL‐1RI?/? mice was associated with down‐regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid β‐oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid‐binding protein expression and decreased lipogenesis. Correlation analysis revealed down‐regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL‐1RI‐mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet‐induced insulin resistance, independent of obesity.  相似文献   

10.
Insulin resistance is a characteristic of type-2 diabetes and its development is associated with an increased fat consumption. Muscle is one of the tissues that becomes insulin resistant after high fat (HF) feeding. The aim of the present study is to identify processes involved in the development of HF-induced insulin resistance in muscle of ApOE3*Leiden mice by using microarrays. These mice are known to become insulin resistant on a HF diet. Differential gene expression was measured in muscle using the Affymetrix mouse plus 2.0 array. To get more insight in the processes, affected pathway analysis was performed with a new tool, PathVisio. PathVisio is a pathway editor customized with plug-ins (1) to visualize microarray data on pathways and (2) to perform statistical analysis to select pathways of interest. The present study demonstrated that with pathway analysis, using PathVisio, a large variety of processes can be investigated. The significantly regulated genes in muscle of ApOE3*Leiden mice after 12 weeks of HF feeding were involved in several biological pathways including fatty acid beta oxidation, fatty acid biosynthesis, insulin signaling, oxidative stress and inflammation.  相似文献   

11.
Objective: Chromium has gained popularity as a nutritional supplement for diabetic patients. This study evaluated the effect of chronic administration of a chromium complex of d ‐phenylalanine (Cr(d ‐phe)3) on glucose and insulin tolerance in obese mice. The study tested the hypothesis that Cr(d ‐phe)3 suppresses endoplasmic reticulum (ER) stress and insulin resistance in these animals. Methods and Procedures: C57BL lean and ob/ob obese mice were randomly divided to orally receive vehicle or Cr(d ‐phe)3 (3.8 μg of elemental chromium/kg/day) for 6 months. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Protein levels of phosphorylated pancreatic ER kinase (PERK), α subunit of translation initiation factor 2 (eIF2α) and inositol‐requiring enzyme‐1 (IRE‐1), p‐c‐Jun, and insulin receptor substrate‐1 (IRS‐1) phosphoserine‐307 were assessed by western blotting. In vitro ER stress was induced by treating cultured muscle cells with thapsigargin in the presence or absence of Cr(d ‐phe)3. Results: ob/ob mice showed poor glucose and insulin tolerance compared to the lean controls, which was attenuated by Cr(d ‐phe)3. Markers of insulin resistance (phospho‐c‐Jun and IRS‐1 phosphoserine) and ER stress (p‐PERK, p‐IRE‐1, p‐eIF2α), which were elevated in ob/ob mice, were attenuated following Cr(d ‐phe)3 treatment. Chromium treatment was also associated with a reduction in liver triglyceride levels and lipid accumulation. In cultured myotubes, Cr(d ‐phe)3 attenuated ER stress induced by thapsigargin. Discussion: Oral Cr(d ‐phe)3 treatment reduces glucose intolerance, insulin resistance, and hepatic ER stress in obese, insulin‐resistant mice.  相似文献   

12.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder and frequently exacerbates in postmenopausal women. In NAFLD, the endoplasmic reticulum (ER) plays an important role in lipid metabolism, in which salubrinal is a selective inhibitor of eIF2α de-phosphorylation in response to ER stress. To determine the potential mechanism of obesity-induced NAFLD, we employed salubrinal and evaluated the effect of ER stress and autophagy on lipid metabolism. Ninety-five female C57BL/6 mice were randomly divided into five groups: standard chow diet, high-fat (HF) diet, HF with salubrinal, HF with ovariectomy, and HF with ovariectomy and salubrinal. All mice except for SC were given HF diet. After the 8-week obesity induction, salubrinal was subcutaneously injected for the next 8 weeks. The expression of ER stress and autophagy markers was evaluated in vivo and in vitro. Compared to the normal mice, the serum lipid level and adipose tissue were increased in obese mice, while salubrinal attenuated obesity by blocking lipid disorder. Also, the histological severity of hepatic steatosis and fibrosis in the liver and lipidosis was suppressed in response to salubrinal. Furthermore, salubrinal inhibited ER stress by increasing the expression of p-eIF2α and ATF4 with a decrease in the level of CHOP. It promoted autophagy by increasing LC3II/I and inhibiting p62. Correlation analysis indicated that lipogenesis in the development of NAFLD was associated with ER stress. Collectively, we demonstrated that eIF2α played a key role in obesity-induced NAFLD, and salubrinal alleviated hepatic steatosis and lipid metabolism by altering ER stress and autophagy through eIF2α signaling.Subject terms: Obesity, Metabolic syndrome, Outcomes research  相似文献   

13.
14.

Scopes

To investigate the effects of high-fat diet enriched with lard oil or soybean oil on liver endoplasmic reticulum (ER) stress and inflammation markers in diet-induced obese (DIO) rats and estimate the influence of following low-fat diet feeding.

Methods and Results

Male SD rats were fed with standard low-fat diet (LF, n = 10) and two isoenergentic high-fat diets enriched with lard (HL, n = 45) or soybean oil (HS, n = 45) respectively for 10 weeks. Then DIO rats from HL and HS were fed either high-fat diet continuously (HL/HL, HS/HS) or switched to low-fat diet (HL/LF, HS/LF) for another 8 weeks. Rats in control group were maintained with low-fat diet. Body fat, serum insulin level, HOMA-IR and ectopic lipid deposition in liver were increased in HL/HL and HS/HS compared to control, but increased to a greater extent in HL/HL compared to HS/HS. Markers of ER stress including PERK and CHOP protein expression and phosphorylation of eIF2α were significantly elevated in HL/HL group while phosphorylation of IRE1α and GRP78 protein expression were suppressed in both HL/HL and HS/HS. Besides, inflammatory signals (OPN, TLR2, TLR4 and TNF-α) expressions significantly increased in HL/HL compared to others. Switching to low-fat diet reduced liver fat deposition, HOMA-IR, mRNA expression of TLR4, TNF-α, PERK in both HL/LF and HS/LF, but only decreased protein expression of OPN, PERK and CHOP in HL/LF group. In addition, HL/LF and HS/LF exhibited decreased phosphorylation of eIF2α and increased phosphorylation of IRE1α and GRP78 protein expression when compared with HL/HL and HS/HS respectively.

Conclusions

Lard oil was more deleterious in insulin resistance and hepatic steatosis via promoting ER stress and inflammation responses in DIO rats, which may be attributed to the enrichment of saturated fatty acid. Low-fat diet was confirmed to be useful in recovering from impaired insulin sensitivity and liver fat deposition in this study.  相似文献   

15.
16.
Beta2-integrins are important in leukocyte trafficking and function, and are regulated through the binding of cytoplasmic proteins, such as kindlin-3, to their intracellular domain. Here, we investigate the involvement of beta2-integrins in the regulation of metabolic disease using mice where the kindlin-3 binding site in the beta2-integrin cytoplasmic tail has been mutated (TTT/AAA-beta2-integrin knock-in (KI) mice), leading to expressed but dysfunctional beta2-integrins and significant neutrophilia in vivo. Beta2-integrin KI mice fed on a high fat diet showed normal weight gain, and normal accumulation of macrophages and lymphocytes in white adipose tissue (WAT) and liver, but increased neutrophil numbers especially in WAT. In addition, beta2-integrin KI mice fed on a high fat diet showed significantly increased peripheral insulin resistance in response to high-fat feeding. However, this was associated with improved glucose disposal following glucose load. Interestingly, beta2-integrin KI neutrophils produced more elastase in vitro, in response to stimulation. Beta2-integrin KI mice displayed variability of tissue inflammatory status, with liver and WAT exhibiting little or no difference in inflammation compared to high fat fed controls, whereas skeletal muscle demonstrated a raised inflammatory profile in association with higher elastase levels and diminished signalling through the IRS1-PKB pathway. In conclusion, although expression of dysfunctional beta2-integrins increased neutrophil production and infiltration into tissue, skeletal muscle was the most affected tissue exhibiting evidence of higher neutrophil activity and insulin resistance. Thus, beta2-integrins modulate glucose homeostasis during high fat feeding predominantly through actions on skeletal muscle to affect metabolic phenotype in vivo.  相似文献   

17.
Excessive consumption of saturated fat leads to non-alcoholic fatty liver disease (NAFLD), which is attenuated by supplementation of n-3 polyunsaturated fatty acids (PUFAs). Endoplasmic reticulum (ER) stress is crucial in the development of NAFLD, but how high-saturated fat diet (HFD) causes ER stress and NAFLD remains unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is involved in hepatic ER stress. We aimed to explore the roles of LOX-1 in HFD-induced ER stress. Male Sprague–Dawley rats were fed an HFD without or with supplementation of fish oil for 16 weeks. The effects of n-3 PUFAs on hepatic ER stress degrees and the expression levels of LOX-1 were examined. Then human L02 hepatoma cells were treated with palmitate or palmitate and DHA to determine the ER stress and LOX-1 expression levels in vitro. After that the expression of LOX-1 in L02 cells was either knocked-down or overexpressed to analyze the roles of LOX-1 in palmitate-induced ER stress. The feeding of HFD induced NAFLD development and ER stress in the liver, and LOX-1 expressing level, which were all reversed by fish oil supplementation. In vitro, DHA treatment reduced the expression of LOX-1, and palmitate-induced ER stress. SiRNA-mediated knock-down of LOX-1 inhibited palmitate-induced ER stress, whereas overexpression of LOX-1 dramatically induced ER stress in L02 cells.LOX-1 is critical for HFD-induced ER stress, and inhibition of its expression under the treatment of n-3 PUFAs could ameliorate HFD-induced NAFLD.  相似文献   

18.
Progression of human arteriosclerosis is associated with and promoted by induction of the endoplasmic reticulum (ER) stress pathway known as the unfolded protein response (UPR). Most studies that assess UPR markers in atherosclerosis rely on methodologies that suffer from low signal sensitivity, nonspecific immunohistochemistry, or inability to resolve differences between cellular subsets. To accurately monitor the UPR independently of artifacts generated postmortem, we describe here the first in vivo reporter for ER stress during atherosclerosis. Mice transgenic for the fluorescent XBP-1 ER stress indicator Erai were bred onto the Ldlr(-/-) background and fed an atherogenic diet. Subsequently, ERAI fluorescence at aortic roots was quantified and colocalized with lesional cell type. We found that the ERAI fluorescent signal increased as a function of time on the atherogenic diet and, in advanced lesions, was found close to necrotic cores. The majority of ERAI fluorescence localized to macrophages, and to a lesser extent, to intimal smooth muscle cells and patches of endothelial cells. These mice provide a valuable tool to monitor activation of the UPR in atherosclerosis and will be useful for future studies investigating relationships between pharmacologic and genetic modulators of UPR and atherosclerosis.  相似文献   

19.
20.
The endoplasmic reticulum (ER) is an organelle in which most membrane and secretory proteins are synthesized. If these proteins are not folded correctly, unfolded proteins accumulate in the ER lumen, causing a cellular situation known as ER stress. Recently, many studies on the relationship between ER stress and diseases have been reported. Thus, studies of ER stress in vivo should yield information that is useful in pathology. Model mice have been developed as a powerful tool to visualize ER stress in vivo, but this approach depends on transgenic technology. Here, we report on a method of detecting ER stress in vivo by Raman spectroscopy. Our experiments revealed that two specific Raman bands were reduced in both cultured cells and animal tissues in an ER stress dependent manner. This suggests that Raman spectroscopy could be a useful tool to detect ER stress in vivo without transgenic technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号