共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule. 相似文献
2.
3.
Ca2+ and activation mechanisms in skeletal muscle 总被引:12,自引:0,他引:12
4.
Residual force enhancement in myofibrils and sarcomeres 总被引:1,自引:0,他引:1
Joumaa V Leonard TR Herzog W 《Proceedings. Biological sciences / The Royal Society》2008,275(1641):1411-1419
Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (n=18) that, owing to the strict in series arrangement, allowed for evaluation of this property in individual sarcomeres (n=79). We found consistent force enhancement following stretch in all myofibrils and each sarcomere, and forces in the enhanced state typically exceeded the isometric forces on the plateau of the force-length relationship. Measurements were made on the plateau and the descending limb of the force-length relationship and revealed gross sarcomere length non-uniformities prior to and following active myofibril stretching, but in contrast to previous accounts, revealed that sarcomere lengths were perfectly stable under these experimental conditions. We conclude that force enhancement is a sarcomeric property that does not depend on sarcomere length instability, that force enhancement varies greatly for different sarcomeres within the same myofibril and that sarcomeres with vastly different amounts of actin-myosin overlap produce the same isometric steady-state forces. This last finding was not explained by differences in the amount of contractile proteins within sarcomeres, vastly different passive properties of individual sarcomeres or (half-) sarcomere length instabilities, suggesting that the basic mechanical properties of muscles, such as force enhancement, force depression and creep, which have traditionally been associated with sarcomere instabilities and the corresponding dynamic redistribution of sarcomere lengths, are not caused by such instabilities, but rather seem to be inherent properties of the mechanisms of contraction. 相似文献
5.
6.
Role of Ca2+ and cross-bridges in skeletal muscle thin filament activation probed with Ca2+ sensitizers 下载免费PDF全文
Thin filament regulation of contraction is thought to involve the binding of two activating ligands: Ca2+ and strongly bound cross-bridges. The specific cross-bridge states required to promote thin filament activation have not been identified. This study examines the relationship between cross-bridge cycling and thin filament activation by comparing the results of kinetic experiments using the Ca2+ sensitizers caffeine and bepridil. In single skinned rat soleus fibers, 30 mM caffeine produced a leftward shift in the tension-pCa relation from 6.03 +/- 0.03 to 6.51 +/- 0.03 pCa units and lowered the maximum tension to 0.60 +/- 0.01 of the control tension. In addition, the rate of tension redevelopment (ktr) was decreased from 3.51 +/- 0.12 s-1 to 2.70 +/- 0.19 s-1, and Vmax decreased from 1.24 +/- 0.07 to 0.64 +/- 0.02 M.L./s. Bepridil produced a similar shift in the tension-pCa curves but had no effect on the kinetics. Thus bepridil increases the Ca2+ sensitivity through direct effects on TnC, whereas caffeine has significant effects on the cross-bridge interaction. Interestingly, caffeine also produced a significant increase in stiffness under relaxing conditions (pCa 9.0), indicating that caffeine induces some strongly bound cross-bridges, even in the absence of Ca2+. The results are interpreted in terms of a model integrating cross-bridge cycling with a three-state thin-filament activation model. Significantly, strongly bound, non-tension-producing cross-bridges were essential to modeling of complete activation of the thin filament. 相似文献
7.
Alhondra Solares-Pérez Jorge A. Sánchez Alejandro Zentella-Dehesa María C. García Ramón M. Coral-Vázquez 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
δ-Sarcoglycan (δ-SG) knockout (KO) mice develop skeletal muscle histopathological alterations similar to those in humans with limb muscular dystrophy. Membrane fragility and increased Ca2+ permeability have been linked to muscle degeneration. However, little is known about the mechanisms by which genetic defects lead to disease.Methods
Isolated skeletal muscle fibers of wild-type and δ-SG KO mice were used to investigate whether the absence of δ-SG alters the increase in intracellular Ca2+ during single twitches and tetani or during repeated stimulation. Immunolabeling, electrical field stimulation and Ca2+ transient recording techniques with fluorescent indicators were used.Results
Ca2+ transients during single twitches and tetani generated by muscle fibers of δ-SG KO mice are similar to those of wild-type mice, but their amplitude is greatly decreased during protracted stimulation in KO compared to wild-type fibers. This impairment is independent of extracellular Ca2+ and is mimicked in wild-type fibers by blocking store-operated calcium channels with 2-aminoethoxydiphenyl borate (2-APB). Also, immunolabeling indicates the localization of a δ-SG isoform in the sarcoplasmic reticulum of the isolated skeletal muscle fibers of wild-type animals, which may be related to the functional differences between wild-type and KO muscles.Conclusions
δ-SG has a role in calcium homeostasis in skeletal muscle fibers.General significance
These results support a possible role of δ-SG on calcium homeostasis. The alterations caused by the absence of δ-SG may be related to the pathogenesis of muscular dystrophy. 相似文献8.
The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 microM. Increasing Ca2+(i) from 0.03 to 1,024 microM shifted the voltage for half maximal activation (V(1/2)) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) < or = 0.03 microM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same Po, were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of Po arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (approximately 0 through 1,024 microM), voltage (+80 to -80 mV), and Po (10(-4) to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel. 相似文献
9.
S Morimoto 《Biochimica et biophysica acta》1991,1073(2):336-340
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase. 相似文献
10.
Stringent requirement for Ca2+ in the removal of Z-lines and alpha-actinin from isolated myofibrils by Ca2+-activated neutral proteinase 总被引:3,自引:0,他引:3 下载免费PDF全文
Treatment of isolated myofibrils with Ca2+-activated neutral proteinase (CANP) results in specific removal of Z-line and of alpha-actinin. To investigate the ionic requirement for these processes, we measured Z-line removal by phase-contrast and interference microscopy and alpha-actinin removal by sodium dodecyl sulphate/polyacrylamide-gel electrophoretic analysis of myofibrillar proteins. The proteolytic digestion of native purified proteins was measured directly on polyacrylamide gels and by the fluorescamine technique. We found that the removal of Z-line and alpha-actinin as well as the release of proteolytic degradation products from isolated myofibrils by CANP occur only in the presence of Ca2+; Sr2+, Ba2+, Mn2+, Mg2+, Co2+ and Zn2+ are all ineffective. In contrast with this stringent requirement for Ca2+, the proteolytic activity of CANP measured with denatured casein, native and denatured haemoglobin, native actin and tropomyosin also occurs in the presence of other bivalent cations, in the following order: Ca2+ greater than Sr2+ greater than Ba2+. These data suggest that only Ca2+ can produce the conformational change in myofibrils that renders them susceptible to the action of CANP, whereas its proteolytic activity is stimulated by several bivalent ions. 相似文献
11.
The Ca(2+)/Mg(2+) sites (III and IV) located in the C-terminal domain of cardiac troponin C (cTnC) have been generally considered to play a purely structural role in keeping the cTnC bound to the thin filament. However, several lines of evidence, including the discovery of cardiomyopathy-associated mutations in the C-domain, have raised the possibility that these sites may have a more complex role in contractile regulation. To explore this possibility, the ATPase activity of rat cardiac myofibrils was assayed under conditions in which no Ca(2+) was bound to the N-terminal regulatory Ca(2+)-binding site (site II). Myosin-S1 was treated with N-ethylmaleimide to create strong-binding myosin heads (NEM-S1), which could activate the cardiac thin filament in the absence of Ca(2+). NEM-S1 activation was assayed at pCa 8.0 to 6.5 and in the presence of either 1mM or 30 μM free Mg(2+). ATPase activity was maximal when sites III and IV were occupied by Mg(2+) and it steadily declined as Ca(2+) displaced Mg(2+). The data suggest that in the absence of Ca(2+) at site II strong-binding myosin crossbridges cause the opening of more active sites on the thin filament if the C-domain is occupied by Mg(2+) rather than Ca(2+). This finding could be relevant to the contraction-relaxation kinetics of cardiac muscle. As Ca(2+) dissociates from site II of cTnC during the early relaxing phase of the cardiac cycle, residual Ca(2+) bound at sites III and IV might facilitate the switching off of the thin filament and the detachment of crossbridges from actin. 相似文献
12.
Ward CW Feng W Tu J Pessah IN Worley PK Schneider MF 《The Journal of biological chemistry》2004,279(7):5781-5787
Members of the Homer family of proteins are known to form multimeric complexes capable of cross-linking plasma membrane channels (e.g. metabotropic glutamate receptor) and intracellular Ca2+ release channels (e.g. inositol trisphosphate receptor) in neurons, which potentiates Ca2+ release. Recent work has demonstrated direct interaction of Homer proteins with type 1 and type 2 ryanodine receptor (RyR) isoforms. Moreover, Homer proteins have been shown to modulate RyR-dependent Ca2+ release in isolated channels as well as in whole cell preparations. We now show that long and short forms of Homer H1 (H1c and H1-EVH1) are potent activators of Ca2+ release via RyR in skeletal muscle fibers (e.g. Ca2+ sparks) and potent modulators of ryanodine binding to membranes enriched with RyR, with H1c being significantly more potent than H1-EVH1. Homer did not significantly alter the spatio-temporal properties of the sparks, demonstrating that Homer increases the rate of opening of RyRs, with no change in the overall RyR channel open time and amount of Ca2+ released during a spark. No changes in Ca2+ spark frequency or properties were observed using a full-length H1c with mutation in the EVH1 binding domain (H1c-G89N). One novel finding with each Homer agonist (H1c and H1-EVH1) was that in combination their actions on [3H]ryanodine binding was additive, an effect also observed for these Homer agonists in the Ca2+ spark studies. Finally, in Ca2+ spark studies, excess H1c-G89N prevented the effects of H1c in a dominant negative manner. Taken together our results suggest that the EVH1 domain is critical for the agonist behavior on Ca2+ sparks and ryanodine binding, and that the coiled-coil domain, present in long but not short form Homer, confers an increase in agonist potential apparently through the multimeric association of Homer ligand. 相似文献
13.
The active site residues in calpain are mis-aligned in the apo, Ca(2+)-free form. Alignment for catalysis requires binding of Ca2+ to two non-EF-hand sites, one in each of the core domains I and II. Using domain swap constructs between the protease cores of the mu and m isoforms (which have different Ca2+ requirements) and structural and biochemical characterization of site-directed mutants, we have deduced the order of Ca2+ binding and the basis of the cooperativity between the two sites. Ca2+ binds first to the partially preformed site in domain I. Knockout of this site through D106A substitution eliminates binding to this domain as shown by the crystal structure of D106A muI-II. However, at elevated Ca2+ concentrations this mutant still forms the double salt bridge that links the two Ca2+ sites and becomes nearly as active as muI-II. Elimination of the bridge in E333A muI-II has a more drastic effect on enzyme action, especially at low Ca2+ concentrations. Domain II Ca2+ binding appears essential, because Ca(2+)-coordinating side-chain mutants E302R and D333A have severely impaired muI-II activation and activity. The introduction of mutations into the whole heterodimeric enzyme that eliminate the salt bridge or Ca2+ binding to domain II produce similar phenotypes, suggesting that the protease core Ca2+ switch is crucial and cannot be overridden by Ca2+ binding to other domains. 相似文献
14.
Christine Berthier Candice Kutchukian Clément Bouvard Yasushi Okamura Vincent Jacquemond 《The Journal of general physiology》2015,145(4):315-330
Phosphoinositides act as signaling molecules in numerous cellular transduction processes, and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) regulates the function of several types of plasma membrane ion channels. We investigated the potential role of PtdIns(4,5)P2 in Ca2+ homeostasis and excitation–contraction (E-C) coupling of mouse muscle fibers using in vivo expression of the voltage-sensing phosphatases (VSPs) Ciona intestinalis VSP (Ci-VSP) or Danio rerio VSP (Dr-VSP). Confocal images of enhanced green fluorescent protein–tagged Dr-VSP revealed a banded pattern consistent with VSP localization within the transverse tubule membrane. Rhod-2 Ca2+ transients generated by 0.5-s-long voltage-clamp depolarizing pulses sufficient to elicit Ca2+ release from the sarcoplasmic reticulum (SR) but below the range at which VSPs are activated were unaffected by the presence of the VSPs. However, in Ci-VSP–expressing fibers challenged by 5-s-long depolarizing pulses, the Ca2+ level late in the pulse (3 s after initiation) was significantly lower at 120 mV than at 20 mV. Furthermore, Ci-VSP–expressing fibers showed a reversible depression of Ca2+ release during trains, with the peak Ca2+ transient being reduced by ∼30% after the application of 10 200-ms-long pulses to 100 mV. A similar depression was observed in Dr-VSP–expressing fibers. Cav1.1 Ca2+ channel–mediated current was unaffected by Ci-VSP activation. In fibers expressing Ci-VSP and a pleckstrin homology domain fused with monomeric red fluorescent protein (PLCδ1PH-mRFP), depolarizing pulses elicited transient changes in mRFP fluorescence consistent with release of transverse tubule–bound PLCδ1PH domain into the cytosol; the voltage sensitivity of these changes was consistent with that of Ci-VSP activation, and recovery occurred with a time constant in the 10-s range. Our results indicate that the PtdIns(4,5)P2 level is tightly maintained in the transverse tubule membrane of the muscle fibers, and that VSP-induced depletion of PtdIns(4,5)P2 impairs voltage-activated Ca2+ release from the SR. Because Ca2+ release is thought to be independent from InsP3 signaling, the effect likely results from an interaction between PtdIns(4,5)P2 and a protein partner of the E-C coupling machinery. 相似文献
15.
The activation of the Ca2+-independent (basal) ATPase from rat skeletal muscle microsomes is demonstrated in the presence of enough Ca2+ to provide the simultaneous activation of the (Ca2+ + Mg2+)-ATPase. It was achieved taking advantage of the delayed inorganic phosphate (Pi) release due to the formation of a phosphoenzyme complex during the Ca2+-dependent enzymatic cycle, which is evidenced in fast experiments. The microsomes were immobilized on a filter and perfused at constant flow with an incubation medium which was briefly interrupted with a pulse of appropriate reactants to activate the ATPases, at 2 degrees C. Successive samples were collected after passing through the filter, at approx. 0.1 s intervals. The Pi effluent profile coincides with the pattern of the pulse when it activates only the Ca2+-independent ATPase, it appears delayed when the pulse activates only extra Pi production by the (Ca2+ + Mg2+)-ATPase, and it includes a rapid and a delayed component when both Ca2+-independent and Ca2+-dependent ATPases are activated simultaneously by the pulse. 相似文献
16.
17.
Naro F De Arcangelis V Coletti D Molinaro M Zani B Vassanelli S Reggiani C Teti A Adamo S 《American journal of physiology. Cell physiology》2003,284(4):C969-C976
Cytoplasmic Ca2+concentration ([Ca2+]i) variation is akey event in myoblast differentiation, but the mechanism by which itoccurs is still debated. Here we show that increases of extracellular Ca2+ concentration ([Ca2+]o)produced membrane hyperpolarization and a concentration-dependent increase of [Ca2+]i due to Ca2+influx across the plasma membrane. Responses were not related toinositol phosphate turnover and Ca2+-sensing receptor.[Ca2+]o-induced[Ca2+]i increase was inhibited byCa2+ channel inhibitors and appeared to be modulated byseveral kinase activities. [Ca2+]i increasewas potentiated by depletion of intracellular Ca2+ storesand depressed by inactivation of the Na+/Ca2+exchanger. The response to arginine vasopressin (AVP), which inducesinositol 1,4,5-trisphosphate-dependent[Ca2+]i increase in L6-C5 cells, was notmodified by high [Ca2+]o. On the contrary,AVP potentiated the [Ca2+]i increase in thepresence of elevated [Ca2+]o. Other clones ofthe L6 line as well as the rhabdomyosarcoma RD cell line and thesatellite cell-derived C2-C12 line expressed similar responses to high[Ca2+]o, and the amplitude of the responseswas correlated with the myogenic potential of the cells. 相似文献
18.
Effect of ethylene glycol and Ca2+ on the binding of Mg2+ x adenyl-5'-yl imidodiphosphate to rabbit skeletal myofibrils 总被引:1,自引:0,他引:1
R E Johnson 《The Journal of biological chemistry》1986,261(2):728-732
The binding of Mg2+ X adenyl-5'-yl imidodiphosphate (Mg2+ X AMP-PNP) to rabbit skeletal myofibrils has been measured in aqueous solution and in 50% ethylene glycol in the presence and absence of Ca2+. In water, the observed binding was weak with less than half the calculated myosin active sites filled even at 1 mM Mg2+ X AMP-PNP. In 50% ethylene glycol, the binding is at least 100-fold tighter and extrapolates to the expected number of binding sites. This is contrasted to the small change seen for Mg2+ X ADP binding between the same sets of conditions. This difference between Mg2+ X AMP-PNP and Mg2+ X ADP is attributed to the strong coupling of Mg2+ X AMP-PNP binding to dissociation of myosin cross-bridges. The Ca2+ sensitivity of Mg2+ X AMP-PNP binding in 50% ethylene glycol is taken as further evidence of the thermodynamic coupling of Mg2+ X AMP-PNP binding to cross-bridge dissociation. In addition, the binding of Mg2+ X AMP-PNP in 50% ethylene glycol is biphasic while Mg2+ X ADP binding under the same conditions is not. The biphasic Mg2+ X AMP-PNP binding could be caused by either the presence of two or more classes of cross-bridges or by negative cooperativity, but the presence of only a single class of Mg2+ X ADP-binding sites implies that if multiple classes of sites are involved, they do not simply differ in steric hindrance or accessibility of the binding site as a whole. The importance of using purified AMP-PNP in the study of actomyosin X AMP-PNP complexes is discussed. 相似文献
19.
K. Narita T. Akita M. Osanai T. Shirasaki H. Kijima K. Kuba 《The Journal of general physiology》1998,112(5):593-609
The extent to which Ca2+-induced Ca2+ release (CICR) affects transmitter release is unknown. Continuous nerve stimulation (20–50 Hz) caused slow transient increases in miniature end-plate potential (MEPP) frequency (MEPP-hump) and intracellular free Ca2+ ([Ca2+]i) in presynaptic terminals (Ca2+-hump) in frog skeletal muscles over a period of minutes in a low Ca2+, high Mg2+ solution. Mn2+ quenched Indo-1 and Fura-2 fluorescence, thus indicating that stimulation was accompanied by opening of voltage-dependent Ca2+ channels. MEPP-hump depended on extracellular Ca2+ (0.05–0.2 mM) and stimulation frequency. Both the Ca2+- and MEPP-humps were blocked by 8-(N,N-diethylamino)octyl3,4,5-trimethoxybenzoate hydrochloride (TMB-8), ryanodine, and thapsigargin, but enhanced by CN−. Thus, Ca2+-hump is generated by the activation of CICR via ryanodine receptors by Ca2+ entry, producing MEPP-hump. A short interruption of tetanus (<1 min) during MEPP-hump quickly reduced MEPP frequency to a level attained under the effect of TMB-8 or thapsigargin, while resuming tetanus swiftly raised MEPP frequency to the previous or higher level. Thus, the steady/equilibrium condition balancing CICR and Ca2+ clearance occurs in nerve terminals with slow changes toward a greater activation of CICR (priming) during the rising phase of MEPP-hump and toward a smaller activation during the decay phase. A short pause applied after the end of MEPP- or Ca2+-hump affected little MEPP frequency or [Ca2+]i, but caused a quick increase (faster than MEPP- or Ca2+-hump) after the pause, whose magnitude increased with an increase in pause duration (<1 min), suggesting that Ca2+ entry-dependent inactivation, but not depriming process, explains the decay of the humps. The depriming process was seen by giving a much longer pause (>1 min). Thus, ryanodine receptors in frog motor nerve terminals are endowed with Ca2+ entry-dependent slow priming and fast inactivation mechanisms, as well as Ca2+ entry-dependent activation, and involved in asynchronous exocytosis. Physiological significance of CICR in presynaptic terminals was discussed. 相似文献