首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female sterility associated with the presence of callose in the nucellus at anthesis was studied in an F1 progeny of two alfalfa plants displaying 5 and 81% ovule sterility. Transgressive segregation was observed and 100% sterile plants were obtained. Two of the sterile plants were used for cytological analyses on sectioned and stain-cleared whole ovules, in comparison to a 100% fertile full sib plant. The first sign of sterility was callose deposition in the nucellus cell walls surrounding the sporogenous cells of the young ovules. At the same stage, no trace of callose was present in ovule primordia of the fertile plant. Megaspore mother cells differentiated in both fertile and sterile ovules and meiosis was initiated, as indicated by chromatin patterning typical of a zygotene stage. However, meiosis was never completed in the sterile plants. In the control, callose was deposited around the meiocyte and as sects between the cells of the dyads and tetrads during meiosis, and disappeared after the completion of meiosis; an embryo sac developed and female fertility was normal. In the sterile ovules, some nucellus cells enlarged and callose accumulation continued forming thick deposits. At anthesis, the sterile ovules lacked an embryo sac and showed massive callose accumulation in the nucellus. Male fertility was normal in female-sterile plants, thus a female-specific arrest of sporogenesis appears to be the cause of sterility. Pistil development was aberrant in some sterile genotypes, even with arrested pistil growth in early flower buds.  相似文献   

2.
Alfalfa (Medicago sativa L.) genotypes at varying densities were investigated for allelopathic impact using annual ryegrass (Lolium rigidum) as the target species in a laboratory bioassay. Three densities (15, 30, and 50 seedlings/beaker) and 40 alfalfa genotypes were evaluated by the equal compartment agar method (ECAM). Alfalfa genotypes displayed a range of allelopathic interference in ryegrass seedlings, reducing root length from 5 to 65%. The growth of ryegrass decreased in response to increasing density of alfalfa seedlings. At the lowest density, Q75 and Titan9 were the least allelopathic genotypes. An overall inhibition index was calculated to rank each alfalfa genotype. Reduction in seed germination of annual ryegrass occurred in the presence of several alfalfa genotypes including Force 10, Haymaster7 and SARDI Five. A comprehensive metabolomic analysis using Quadruple Time of Flight (Q-TOF), was conducted to compare six alfalfa genotypes. Variation in chemical compounds was found between alfalfa root extracts and exudates and also between genotypes. Further individual compound assessments and quantitative study at greater chemical concentrations are needed to clarify the allelopathic activity. Considerable genetic variation exists among alfalfa genotypes for allelopathic activity creating the opportunity for its use in weed suppression through selection.  相似文献   

3.
Genotyping-by-sequencing (GBS) is a rapid and cost-effective genome-wide genotyping technique applicable whether a reference genome is available or not. Due to the cost-coverage trade-off, however, GBS typically produces large amounts of missing marker genotypes, whose imputation becomes therefore both challenging and critical for later analyses. In this work, the performance of four general imputation methods (K-nearest neighbors, Random Forest, singular value decomposition, and mean value) and two genotype-specific methods (“Beagle” and FILLIN) was measured on GBS data from alfalfa (Medicago sativa L., autotetraploid, heterozygous, without reference genome) and rice (Oryza sativa L., diploid, 100 % homozygous, with reference genome). Alfalfa SNP were aligned on the genome of the closely related species Medicago truncatula L.. Benchmarks consisted in progressive data filtering for marker call rate (up to 70 %) and increasing proportions (up to 20 %) of known genotypes masked for imputation. The relative performance was measured as the total proportion of correctly imputed genotypes, globally and within each genotype class (two homozygotes in rice, two homozygotes and one heterozygote in alfalfa). We found that imputation accuracy was robust to increasing missing rates, and consistently higher in rice than in alfalfa. Accuracy was as high as 90–100 % for the major (most frequent) homozygous genotype, but dropped to 80–90 % (rice) and below 30 % (alfalfa) in the minor homozygous genotype. Beagle was the best performing method, both accuracy- and time-wise, in rice. In alfalfa, KNNI and RFI gave the highest accuracies, but KNNI was much faster.  相似文献   

4.
5.
Ethylene biosynthesis during different phases of somatic embryogenesis in Medicago sativa L. cv. Rangelander using two regeneration protocols, RPI and RPII, was studied. The highest ethylene production was detected during callus growth on induction medium in both regeneration protocols. Significantly less ethylene was produced by embryogenic suspension than by callus (RPII). Developing embryos synthesized higher amounts of ethylene than mature embryos. Production of ethylene was strongly limited by the availability of 1-aminocyclopropane-1-carboxylic acid and also by ACC-oxidase activity. However, removal of ethylene from culture vessels’ atmosphere using KMnO4 or HgClO4 had no significant effect on callus growth, somatic embryo induction and development. Reducing of ethylene biosynthesis by aminoethoxyvinylglycine substantially decreased somatic embryo production and adversely affected their development, indicating ethylene requirement during proliferation and differentiation but not induction.  相似文献   

6.
Conventional methods in transforming alfalfa (Medicago sativa) require multiple tissue culture manipulations that are time-consuming and expensive, while applicable only to a few highly regenerable genotypes. Here, we describe a simple in planta method that makes it possible to transform a commercial variety without employing selectable marker genes. Basically, young seedlings are cut at the apical node, cold-treated, and vigorously vortexed in an Agrobacterium suspension also containing sand. About 7% of treated seedlings produced progenies segregating for the T-DNA. The vortex-mediated seedling transformation method was applied to transform alfalfa with an all-native transfer DNA comprising a silencing construct for the caffeic acid o-methyltransferase (Comt) gene. Resulting intragenic plants accumulated reduced levels of the indigestible fiber component lignin that lowers forage quality. The absence of both selectable marker genes and other foreign genetic elements may expedite the governmental approval process for quality-enhanced alfalfa.  相似文献   

7.
8.
A rapid and efficient plant regeneration protocol for a wide range of alfalfa genotypes was developed via direct organogenesis. Through a successive excision of the newly developed apical and axillary shoots, a lot of adventitious buds were directly induced from the cotyledonary nodes when hypocotyl of explants were vertically inserted into modified Murashige and Skoog (MS) medium supplemented with 0.025 mg dm−3 thidiazuron (TDZ) and 3 mg dm−3 AgNO3. When the lower part of shoots excised from explants were immersed into the liquid medium with 1.0 mg dm−3 α-naphthaleneacetic acid (NAA) for 2 min, and then transferred to hormone free half-strength MS medium, over 83.3 % of the shoots developed roots, and all plantlets could acclimatize and establish in soil. The protocol has been successfully applied to eight genotypes, with regeneration frequencies ranging from 63.8 to 82.5 %.  相似文献   

9.

Key message

The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake.

Abstract

Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.
  相似文献   

10.
Trehalase activity (THA) was identified in the cell-free extracts of various organs of Medicago sativa: roots, roots nodules, stems and leaves, as well as in seedlings and seeds. It showed the high activity at acid pH and optimal temperature ranged from 45° to 55°C. It was also differently affected by ions, i.e. the presence of calcium stimulated this activity but it was inhibited by Zn2+ and NH 4 + . After separation by DEAE-cellulose chromatography and purification procedures, trehalase from alfalfa was purified 800 times, and Superose 12 HR gel filtration allowed to determine the molecular weight of 120 kDa for the native enzyme from the stems of alfalfa.  相似文献   

11.
12.
The recent cloning of several agronomically important genes has facilitated the development of functional markers. These markers reside within the target genes themselves and can be used with great reliability and efficiency to identify favorable alleles in a breeding program. Bacterial blight (BB) is a severe rice disease throughout the world that is controlled primarily through use of resistant cultivars. xa5 is a race-specific, recessive gene mediating resistance to BB. It is widely used in rice breeding programs throughout the tropics. Due to its recessive nature, phenotypic selection for xa5-mediated resistance is both slow and costly. Previously, marker assisted selection (MAS) for this resistance gene was not efficient because it involved markers that were only indirectly linked to xa5 and ran the risk of being separated from the trait by recombination. Recently, the cloning of the gene underlying this trait made it possible to develop functional markers. Here we present a set of CAPS markers for easy, quick and direct identification of cultivars or progeny carrying xa5-mediated resistance and provide evidence that these markers are 100% predictive of the presence of the xa5 allele. These markers are expected to enhance the reliability and cost-effectiveness of MAS for xa5-mediated resistance.  相似文献   

13.
Heat shock proteins (HSPs) are ubiquitous protective proteins that play crucial roles in plant development and adaptation to stress, and the aim of this study is to characterize the HSP gene in alfalfa. Here we isolated a small heat shock protein gene (MsHSP17.7) from alfalfa by homology-based cloning. MsHSP17.7 contains a 477-bp open reading frame and encodes a protein of 17.70-kDa. The amino acid sequence shares high identity with MtHSP (93.98 %), PsHSP17.1 (83.13 %), GmHSP17.9 (74.10 %) and SlHSP17.6 (79.25 %). Phylogenetic analysis revealed that MsHSP17.7 belongs to the group of cytosolic class II small heat shock proteins (sHSP), and likely localizes to the cytoplasm. Quantitative RT-PCR indicated that MsHSP17.7 was induced by heat shock, high salinity, peroxide and drought stress. Prokaryotic expression indicated that the salt and peroxide tolerance of Escherichia coli was remarkably enhanced. Transgenic Arabidopsis plants overexpressing MsHSP17.7 exhibited increased root length of transgenic Arabidopsis lines under salt stress compared to the wild-type line. The malondialdehyde (MDA) levels in the transgenic lines were significantly lower than in wild-type, although proline levels were similar between transgenic and wild-type lines. MsHSP17.7 was induced by heat shock, high salinity, oxidative stress and drought stress. Overexpression analysis suggests that MsHSP17.7 might play a key role in response to high salinity stress.  相似文献   

14.

Key message

The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum.

Abstract

Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
  相似文献   

15.
Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0–13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.  相似文献   

16.
A new plant expression vector (pBSbtCry1Ac-GNA) containing two insect resistant genes, a synthetic chimeric gene SbtCry1Ac encoding the insecticidal protein CrylAc and a gene GNA encoding snowdrop lectin (Galanthus nivalis agglutinin) was constructed. Transgenic tobacco plants containing these two genes were obtained through Agrobacterium-mediated transformation of tobacco leaf discs. Results from PCR detection and genomic DNA Southern blot analysis indicated that both SbtCrylAc gene and GNA gene were integrated into the genome of these plants. Results of Western blot analysis indicated that these two proteins were expressed in the analyzed plants. Bioassays of Myzus persicae and Helicoverpa assulta on detached leaves of transformed tobacco plants were carried out. The average aphid inhibition rate of these plants tested at 12 d post-infestation was 71.9 %. The average H. assulta mortality of these plants tested at 6 d post-infestation was up to 89.8 %. The kanamycin resistance of the T1 progeny of these transgenic plants was analyzed and a typical 3:1 segregation was observed.  相似文献   

17.
18.
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by W. R. McCombie  相似文献   

19.
Summary Hemp (Cannabis sativa L.) is cultivated in many parts of the world for ils fiber, oil, and seed. The development of new hemp cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the propagation of hemp in tissue culture and to establish a protocol for Agrobacterium-mediated transformation for foreign gene introduction. Stem and leaf segments from seedlings of four hemp varieties were placed on Murashige and Skoog medium with Gamborg B5 vitamins (MB) supplemented with 5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 μM kinetin, 3% sucrose, and 8 gl−1 agar. Large masses of callus were produced within 4 wk for all cultivars. Suspension cultures were established in MB medium containing 2.5 μM 2,4-D. To promote embryogenesis or organogenesis, explants, callus, and suspension cultures derived from a range of explant sources and seedling ages were exposed to variations in the culture medium and changes to the culture environment. None of the treatments tested were successful in promoting plantlet regeneration. Suspension cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary vector pNOV3635 with a gene encoding phosphomannose isomerase (PMI). Transformed callus was selected on medium containing 1–2% mannose. A chlorophenol red assay was used to confirm that the PMI gene was expressed. Polymerase chain reaction and Southern hybridization detected the presence of the PMI gene. Copy number in different lines ranged from one to four.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号