首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SIR2 protein, an NAD-dependent deacetylase, is localized to nucleus and is involved in life span extension by calorie restriction in yeast. In mammals, among the seven SIR2 homologues (SIRT1-7), SIRT3, 4, and 5 are localized to mitochondria. As SIRT5 mRNA levels in liver are increased by fasting, the physiological role of SIRT5 was investigated in liver of SIRT5-overexpressing transgenic (SIRT5 Tg) mice. We identified carbamoyl phosphate synthetase 1 (CPS1), a key enzyme of the urea cycle that catalyzes condensation of ammonia with bicarbonate to form carbamoyl phosphate, as a target of SIRT5 by two-dimensional electrophoresis comparing mitochondrial proteins in livers of SIRT5 Tg and wild-type mice. CPS1 protein was more deacetylated and activated in liver of SIRT5 Tg mice than in wild-type. In addition, urea production was upregulated in hepatocytes of SIRT5 Tg mice. These results agree with those of a previous study using SIRT5 knockout (KO) mice. Because ammonia generated during fasting is toxic, SIRT5 protein might play a protective role by converting ammonia to non-toxic urea through deacetylation and activation of CPS1.  相似文献   

2.
Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast Sir2 functions; 2) SIRT3, SIRT4, and SIRT5 are localized in mitochondria, an organelle that links aging and energy metabolism; 3) cellular p53 is a major in vivo substrate of SIRT1 deacetylase, but not the other six SIRT proteins; 4) SIRT1, but not the other two nuclear SIRT proteins, shows an in vitro deacetylase activity on histone H4 and p53 peptides; and 5) overexpression of any one of the seven SIRT proteins does not extend cellular replicative lifespan in normal human fibroblasts or prostate epithelial cells. This study supports the notion that multiple human SIRT proteins have evolutionarily conserved and nonconserved functions at different cellular locations and reveals that the lifespan of normal human cells, in contrast to that of lower eukaryotes, cannot be manipulated by increased expression of a single SIRT protein.  相似文献   

3.
4.
Sirtuins are a family of NAD+‐dependent protein deacetylases that regulate cellular functions through deacetylation of a wide range of protein targets. Overexpression of Sir2, the first gene discovered in this family, is able to extend the life span in various organisms. The anti‐aging effects of human homologues of sirtuins, SIRT1‐7, have also been suggested by animal and human association studies. However, the precise mechanisms whereby sirtuins exert their anti‐aging effects remain elusive. In this study, we aim to identify novel interacting partners of SIRT1 and SIRT3, two human sirtuins ubiquitously expressed in many tissue types. Our results demonstrate that SIRT1 and SIRT3 are localized within different intracellular compartments, mainly nuclei and mitochondria, respectively. Using affinity purification and MALDI‐TOF/TOF‐MS/MS analysis, their potential interacting partners have been identified from the enriched subcellular fractions and specific interactions confirmed by co‐immunoprecipitation and Western blotting experiment. Further analyses suggest that overexpression of SIRT1 or SIRT3 in HEK293 cells could induce hypoacetylation and affect the intracellular localizations and protein stabilities of their interacting partners. Taken together, the present study has identified a number of novel SIRT protein interacting partners, which might be critically involved in the anti‐aging and metabolic regulatory activities of sirtuins.  相似文献   

5.
6.
王颖  高静  钱进军 《生命科学》2010,(4):317-320
SIRT1(silent mating type information regulation2homolog1)是Sirtuins脱乙酰基酶家族中的一员,是酵母沉默信息调节因子SIR2(silence information regulator)的同源物,因其能在许多生物体模型中作为寿命延长调节子调控细胞生命周期而受到特别关注。SIRT1蛋白存在于哺乳动物细胞质和细胞核中,是老化相关蛋白。SIRT1作用于基因转录因子能加强基因组的稳定性。神经系统发生变性疾病时SIRT1表达量上调,起到一定的神经保护作用。但有实验验证神经元损伤SIRT1过表达导致记忆缺失,并没有起到神经保护作用。SIRT1诱导剂,可以是Sirtuin的激动剂也可以是能量限制状态。目前在生命科学领域里SIRT1已经凸显其科学价值地位,该文就SIRT1及其与神经变性疾病之间的关系做一综述。  相似文献   

7.
8.
SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.  相似文献   

9.
There are seven SIRT isoforms in mammals, with diverse biological functions including gene regulation, metabolism, and apoptosis. Among them, SIRT3 is the only sirtuin whose increased expression has been shown to correlate with an extended life span in humans. In this study, we examined the role of SIRT3 in murine cardiomyocytes. We found that SIRT3 is a stress-responsive deacetylase and that its increased expression protects myocytes from genotoxic and oxidative stress-mediated cell death. We show that, like human SIRT3, mouse SIRT3 is expressed in two forms, a ~44-kDa long form and a ~28-kDa short form. Whereas the long form is localized in the mitochondria, nucleus, and cytoplasm, the short form is localized exclusively in the mitochondria of cardiomyocytes. During stress, SIRT3 levels are increased not only in mitochondria but also in the nuclei of cardiomyocytes. We also identified Ku70 as a new target of SIRT3. SIRT3 physically binds to Ku70 and deacetylates it, and this promotes interaction of Ku70 with the proapoptotic protein Bax. Thus, under stress conditions, increased expression of SIRT3 protects cardiomyocytes, in part by hindering the translocation of Bax to mitochondria. These studies underscore an essential role of SIRT3 in the survival of cardiomyocytes in stress situations.  相似文献   

10.
Lynn EG  McLeod CJ  Gordon JP  Bao J  Sack MN 《FEBS letters》2008,582(19):2857-2862
Knockdown or inhibition of SIRT2 enhances biological stress-tolerance. We extend this phenotype showing that SIRT2 knockdown reduces anoxia-reoxygenation injury in H9c2 cells. Gene array analysis following SIRT2 siRNA knockdown identifies 14-3-3 zeta as the most robustly induced gene. SIRT2 knockdown evokes induction of this chaperone, facilitating cytosolic sequestration of BAD with a corresponding reduction in mitochondrial BAD localization. Concurrent siRNA against SIRT2 and 14-3-3 zeta abolishes the SIRT2-depleted cytoprotective phenotype. SIRT2 functions to moderate cellular stress-tolerance, in part, by modulating the levels of 14-3-3 zeta with the concordant control of BAD subcellular localization.  相似文献   

11.
SIRT1, an NAD-dependent histone/protein deacetylase, has classically been thought of as a nuclear protein. In this study, we demonstrate that SIRT1 is mainly localized in the nucleus of normal cells, but is predominantly localized in the cytoplasm of the cancer / transformed cells we tested. We found this predominant cytoplasmic localization of SIRT1 is regulated by elevated mitotic activity and PI3K/IGF-1R signaling in cancer cells. We show that aberrant cytoplasmic localization of SIRT1 is due to increased protein stability and is regulated by PI3K/IGF-1R signaling. In addition, we determined that SIRT1 is required for PI3K-mediated cancer cell growth. Our study represents the first identification that aberrant cytoplasm localization is one of the specific alternations to SIRT1 that occur in cancer cells, and PI3K/IGF-1R signaling plays an important role in the regulation of cytoplasmic SIRT1 stability. Our findings suggest that the over-expressed cytoplasmic SIRT1 in cancer cells may greatly contribute to its cancer-specific function by working downstream of the PI3K/IGF-1R signaling pathway.  相似文献   

12.
目的:探究缺氧微环境SIRT1亚细胞定位对结直肠癌细胞凋亡的影响及其分子机制。方法:将编码过表达野生型SIRT1以及核定位序列(nuclear localization sequence,NLS)突变型SIRT1(SIRT1NLSmt)的慢病毒载体转染人类结肠癌HCT116细胞株,经嘌呤霉素筛选获得稳定过表达野生型SIRT1细胞株(LV-SIRT1细胞)和细胞质定位的NLS突变型SIRT1细胞株(LV-SIRT1NLSmt细胞),通过观察慢病毒载体编码的SIRT1-GFP融合蛋白的荧光定位,明确稳定转染细胞中外源性SIRT1的亚细胞定位。利用real-time PCR、Western blot法对分离提取的核-质蛋白进行检测,证实外源性SIRT1的表达和亚细胞定位情况。利用CCK-8细胞毒性实验、流式细胞术检测和TUNEL染色比较缺氧(1%O2)处理前后LV-SIRT1和LV-SIRT1NLSmt细胞存活或凋亡情况,Western blot法检测凋亡相关蛋白p53、ac-p53(K382)、Bcl-2、Bax、caspase-3和cleaved caspase-3表达水平。结果:Western blot、real-time PCR和免疫荧光染色结果显示稳定转染细胞均存在外源性SIRT1的过表达,NLS突变可导致SIRT1NLSmt富集于细胞质中;与亲本细胞HCT116和LV-SIRT1NLSmt细胞相比,LV-SIRT1细胞对缺氧的耐受能力最差、细胞凋亡水平最高,凋亡相关蛋白p53、Bax、caspase-3、cleaved caspase-3表达水平显著升高,ac-p53(K382)和Bcl-2表达水平显著下降,且LV-SIRT1细胞的胞核ac-p53下降最为显著。结论:在缺氧微环境中,细胞核定位的SIRT1通过影响p53的去乙酰化水平促进结直肠癌细胞凋亡。  相似文献   

13.
Homologs of the Saccharomyces cerevisiae Sir2 protein, sirtuins, promote longevity in many organisms. Studies of the sirtuin SIRT3 have so far been limited to cell culture systems. Here, we investigate the localization and function of SIRT3 in vivo. We show that endogenous mouse SIRT3 is a soluble mitochondrial protein. To address the function and relevance of SIRT3 in the regulation of energy metabolism, we generated and phenotypically characterized SIRT3 knockout mice. SIRT3-deficient animals exhibit striking mitochondrial protein hyperacetylation, suggesting that SIRT3 is a major mitochondrial deacetylase. In contrast, no mitochondrial hyperacetylation was detectable in mice lacking the two other mitochondrial sirtuins, SIRT4 and SIRT5. Surprisingly, despite this biochemical phenotype, SIRT3-deficient mice are metabolically unremarkable under basal conditions and show normal adaptive thermogenesis, a process previously suggested to involve SIRT3. Overall, our results extend the recent finding of lysine acetylation of mitochondrial proteins and demonstrate that SIRT3 has evolved to control reversible lysine acetylation in this organelle.  相似文献   

14.
Mammalian SIRT1 represses forkhead transcription factors   总被引:57,自引:0,他引:57  
  相似文献   

15.
哺乳动物细胞SIRT1(Sirtuin1)是一种依赖于烟酰胺腺苷二核苷酸(NAD+)的去乙酰化酶,与酵母细胞中与物质代谢和长寿有关的沉默信息调节因子SIR2同源,具有对底物去乙酰化功能的基因。SIRT1通过使底物蛋白的去乙酰化而调控DNA的表达、细胞凋亡、衰老,参与生物体生理或病理过程。本文对SIRT1与寿命、癌症、新陈代谢紊乱等疾病的生物学机理和治疗方法的相关性进行综述。  相似文献   

16.
17.
18.
North BJ  Verdin E 《PloS one》2007,2(8):e784
The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2. During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and throughout mitosis.  相似文献   

19.
Abnormal protein aggregates have been suggested as a common pathogenesis of many neurodegenerative diseases. Two well-known protein degradation pathways are responsible for protein homeostasis by balancing protein biosynthesis and degradative processes: the ubiquitin–proteasome system (UPS) and autophagy-lysosomal system. UPS serves as the primary route for degradation of short-lived proteins, but large-size protein aggregates cannot be degraded by UPS. Autophagy is a unique cellular process that facilitates degradation of bulky protein aggregates by lysosome. Recent studies have demonstrated that autophagy plays a crucial role in the pathogenesis of neurodegenerative diseases characterized by abnormal protein accumulation, suggesting that regulation of autophagy may be a valuable therapeutic strategy for the treatment of various neurodegenerative diseases. Sirtuin-2 (SIRT2) is a class III histone deacetylase that is expressed abundantly in aging brain tissue. Here, we report that SIRT2 increases protein accumulation in murine cholinergic SN56 cells and human neuroblastoma SH-SY5Y cells under proteasome inhibition. Overexpression of SIRT2 inhibits lysosome-mediated autophagic turnover by interfering with aggresome formation and also makes cells more vulnerable to accumulated protein-mediated cytotoxicity by MG132 and amyloid beta. Moreover, MG132-induced accumulation of ubiquitinated proteins and p62 as well as cytotoxicity are attenuated in siRNA-mediated SIRT2-silencing cells. Taken together, these results suggest that regulation of SIRT2 could be a good therapeutic target for a range of neurodegenerative diseases by regulating autophagic flux.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号