首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven new trypsin inhibitors, CyPTI I-VII, were purified from ripe seeds of Cyclanthera pedata by affinity chromatography on immobilized chymotrypsin in the presence of 5 M NaCl followed by preparative native PAGE at pH 8.9. The CyPTIs (Cyclanthera pedata trypsin inhibitors) belong to a well-known squash inhibitor family. They contain 28-30 amino acids and have molecular weights from 3031 to 3367 Da. All the isolated inhibitors strongly inhibit bovine beta-trypsin (K(a)>10(11) M(-1)) and, more weakly, bovine alpha-chymotrypsin (K(a) approximately 10(4)-10(6) M(-1)). In the presence of 3 M NaCl the association constants of CyPTIs with alpha-chymotrypsin increased a few hundred fold. Taking advantage of this phenomenon, a high concentration of NaCl was used to isolate the inhibitors by affinity chromatography on immobilized chymotrypsin. It was found that although one of them, CyPTI IV, had split the Asn25-Gly26 peptide bond, its inhibitory activity remained unchanged. The hydrolyzed bond is located downstream of the reactive site. Presumably, the inhibitor is a naturally occurring, double-chain protein arising during posttranslational modifications.  相似文献   

2.
Aprotinin is a protease inhibitor found in bovine organs and used as a valuable human therapeutic compound. In this work, a process for the recovery of aprotinin from insulin industrial process effluent via affinity adsorption on immobilized trypsin and chymotrypsin was developed. First, process conditions were set as a result of a study of the effects of pH and ionic strength on pure aprotinin adsorption and desorption utilizing an experimental design methodology. The best conditions obtained with immobilized trypsin as the ligand were adsorption at 0.018 M NaCl and pH 8.7 and desorption at 0.018 M NaCl and pH 2.1. For immobilized chymotrypsin, the best conditions were adsorption at 0.582 M NaCl and pH 8.0 and desorption at 0.582 M NaCl and pH 2.1. Recovery of the inhibitor from the effluent was carried out utilizing a two-step process: trypsin-agarose adsorption followed by chymotrypsin-agarose adsorption. Analysis of the chromatographic fractions by trypsin and chymotrypsin inhibition and capillary electrophoresis assays strongly suggested that the recovered inhibitor is aprotinin.  相似文献   

3.
The interaction of galactose oxidase with native and desialylated glycophorin A was studies by oxidizing human erythrocytes and globoside/phospholipid vesicles with the enzyme. Oxidation of the glycolipid was improved in the presence of vesicle-incorporationted glycophorin A. Although galactose oxidase is a very basic protein, it was not adsorbed on native human erythrocytes. Instead, neuraminidase-treated cells bound a substantial amount of galactose oxidase, but the enzyme seemed to be released into the buffer when desialylated glycoproteins had been oxidized.Abbreviation PBS 0.01 M sodium phosphate-0.15 M NaCl, pH 7.4  相似文献   

4.
The amidolytic activity of chymotrypsin for Suc-Ala2-Pro-Phe-MCA was somewhat enhanced by dimyristoyl PC at low ionic strength, but not at high ionic strength. The activity was strongly inhibited by pure egg yolk PA. The inhibition by 200 ng PA was neutralized by addition of 1 microgram dimyristoyl PC or pure egg yolk PC, which formed vesicles with the PA. The Km and kcat (s-1) values of chymotrypsin for hydrolysis of Suc-Ala2-Pro-Phe-MCA changed from 15 microM to 42 microM, 0.1 mM and 0.5 mM, and from 1.5 to 2.7, 3.7, and 1.0 in the presence of 1 microgram dimyristoyl PC, 0.5 micrograms pure egg yolk PE and 0.2 microgram egg yolk PA, respectively. Gel-filtration chromatography showed that dimyristoyl PC formed a complex with chymotrypsin, but did not interact with the substrate, indicating that the basic globular protein, chymotrypsin, interacted with net-neutral PL.  相似文献   

5.
Chemical modification of the gamma-carboxyglutamyl (Gla) residues of bovine prothrombin fragment 1 using the formaldehyde-morpholine method in the presence of 100 Kappm Tb3+ ions at pH 5.0 provided a modified protein containing 3 gamma-methyleneglutamyl residues (gamma-MGlu) and 7 Gla residues (bovine 3-gamma-MGlu-fragment 1). The modified protein bound the same number of Ca2+ ions as the native protein (six to seven), exhibited 28Mg2+-binding properties identical to native fragment 1 (five Mg2+ ions bound), exhibited the metal ion-promoted quenching of the intrinsic fluorescence in a manner similar to the native protein, but did not bind to phosphatidylserine (PS)/phosphatidylcholine (PC) vesicles in the presence of Ca2+ ions. Modification of the bovine protein using [14C]formaldehyde-morpholine provided a 14C-labeled 3-gamma-MGlu-fragment 1 suitable for sequence analysis. Edman sequencing of the peptides released by a tryptic digest of the reduced and carboxymethylated bovine [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7, 8, and 33 had been converted to [14C]gamma-methyleneglutamyl residues. In addition Lys97 was found to contain a 14C label. Similar analysis of the human [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7 and 32 were major modification sites and that Gla residues at positions 6 and 14 were partially modified. Lysine 96 was also modified in the human protein. The incorporation of a 14C label at Lys97 in bovine 3-gamma-MGlu-fragment 1 protein is not responsible for the loss of Ca2+-promoted binding to PS/PC vesicles. We suggest that Gla residues 7, 8, and 33 are elements of the first Ca2+-binding site; occupancy of this site establishes the Ca2+-specific conformation which is essential for the Ca2+-promoted interaction of the bovine protein with PS/PC vesicles. These studies also suggest that the loss of Gla residues at positions 7 and 32 prevents the formation of the initial Ca2+-binding site in the human protein.  相似文献   

6.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0-50 mol % negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pI = 10.5). A similar pH dependence was observed for vesicles containing 50 mol % cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to alpha-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

7.
A series of 16 bovine pancreatic trypsin inhibitor variants mutated at the P(1) position of the binding loop and seven tetrapeptide p-nitroanilide (pNa) substrates of the general formula: suc-Ala-Ala-Pro-Aaa-pNa (where Aaa denotes either: Phe, Arg, Lys, Leu, Met, Nva, Nle) were used to investigate the influence of high salt concentration on the activity of bovine chymotrypsin. The increase of the association constant (K(a)) and the specificity index (k(cat)/K(m)) in the presence of 3 M NaCl highly depends on the chemical nature of the residue at the P(1) position. The highest increase was observed for inhibitors/substrates containing the basic side chains at this site. Surprisingly, for the remaining 13 residues the observed salt effect is not correlated with any side chain properties. In particular, there is a lack of correlation between the accessible non-polar surface area and the magnitude of the salt effect. It suggests that salt-induced increase of the K(a) and k(cat)/K(m) values is not caused by the enhancement of the hydrophobic interactions in chymotrypsin-inhibitor/substrate complex. Moreover, the increase of the K(a) and k(cat)/K(m) values occurs only in the presence of Na(+) ions, while K(+) and Li(+) ions do not change the activity of chymotrypsin. Additionally, the activities of two other proteinases: bovine trypsin and Streptomyces griseus proteinase B were tested in the presence of 3 M NaCl using their specific substrates. The activity of both enzymes was almost not affected by the presence of high NaCl concentration.  相似文献   

8.
The fusion behavior of large unilamellar liposomes composed of N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium (DOTMA) and either phosphatidylcholine (PC) or phosphatidylethanolamine (PE) has been investigated by a fluorescence resonance energy transfer assay for lipid mixing, dynamic light scattering, and electron microscopy. Polyvalent anions induced the fusion of DOTMA/PE (1:1) liposomes with the following sequence of effectiveness: citrate greater than EDTA greater than phosphate, in the presence 100 mM NaCl, pH 7.4. Sulfate, dipicolinate, and acetate were ineffective. DOTMA/PC (1:1) vesicles were completely refractory to fusion in the presence of multivalent anions in the concentration range studied, consistent with the inhibitory effect of PC in divalent cation induced fusion of negatively charged vesicles. DOTMA/PE vesicles could fuse with DOTMA/PC vesicles in the presence of high concentrations of citrate, but not of phosphate. Mixing of DOTMA/PE liposomes with negatively charged phosphatidylserine (PS)/PE or PS/PC (1:1) vesicles resulted in membrane fusion in the absence of multivalent anions. DOTMA/PC liposomes also fused with PS/PE liposomes and, to a limited extent, with PS/PC liposomes. These observations suggest that the interaction of the negatively charged PS polar group with the positively charged trimethylammonium of DOTMA is sufficient to mediate fusion between the two membranes containing these lipids and that the nature of the zwitterionic phospholipid component of these vesicles is an additional determinant of membrane fusion.  相似文献   

9.
The interaction between purified human factor VIII and phospholipid vesicles was investigated. The binding of factor VIII to an equimolecular mixture of phosphatidylserine (PS) and phosphatidylcholine (PC) was studied by sucrose gradient ultracentrifugation (10–40% w/v saccharose in 0.01 M Tris-HCl/0.15 M NaCl buffer (pH 7). In the absence of phospholipids all factor VIII activities (VIII : C, VIII R : WF and VIII R : AG) were found in the zone of highest sucrose density including the factor VIII related protein subunit (200 000 molecular weight). In the presence of an equimolecular mixture of PS/PC VIII R : WF activity, VIII R : AG and a factor VIII related protein still migrated to the bottom of the tube, while VIII : C activity remained at the top where phospholipids were found. Thus a dissociation phenomenon between VIII : C and the other factor VIII relateda activities was apparent in the presence of phospholipids. These results also demonstrate the binding of factor VIII : C to certain active phospholipids.  相似文献   

10.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0–50 mol% negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pl = 10.5). A similar pH dependence was observed for vesicles containing 50 mol% cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to α-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

11.
Monovalent cation-induced fusion of acidic phospholipid vesicles   总被引:1,自引:0,他引:1  
Fusion of small unilamellar vesicles (SUV) consisting of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and phosphatidylglycerol (PG) from egg yolk, dipalmitoylphosphatidylserine (DPPS) and phosphatidylserine (PS) from bovine brain was studied as a function of monovalent cation concentration. Fusion was detected by measuring the changes in the excimer to monomer fluorescence intensity ratio (IE/M) of pyrene-labeled phospholipid analogues upon fusion of the pyrene-labeled and unlabeled vesicles. No fusion was observed from vesicles consisting of DMPC, PS from bovine brain or PG from egg yolk upon addition of NaCl (up to 1 M). However, considerable fusion was evident for vesicles consisting of DMPG or DPPS upon addition of monovalent cations (300 mM to 1 M). Fusion kinetics were fast reaching a plateau after 5 min of addition of cations. The order of efficiency of different monovalent cations to induce the fusion of DMPG vesicles as judged by the changes of the IE/M ratio was Li+ greater than Na+ greater than K+ greater than Cs+. DSC-scan of sonicated DMPG vesicles showed, in the absence of salt, a phase transition at 19.2 degrees C with enthalpy of 1.1 kcal.mol-1. After incubation in the presence of 600 mM NaCl the DSC scan showed a narrow phase transition at 24.1 degrees C with enthalpy of 6.9 kcal.mol-1 and a pronounced pretransition, both supporting that the fusion of the vesicles had occurred in the presence of NaCl. The results indicate that sonicated vesicles consisting of acidic phospholipids with fully saturated fatty acids fuse in the presence of monovalent cations, whereas those containing unsaturated fatty acids do not.  相似文献   

12.
The interaction of an RGD-containing epitope from the hepatitis A virus VP3 capsid protein and its RGA-analogue with lipid membranes was studied by biophysical methods. Two types of model membrane were used: vesicles and monolayers spread at the air/water interface, with a composition that closely resembles the lipid moiety of hepatocyte membranes: PC/SM/PE/PC (40:33:12:15; PC: 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM: sphingomyelin from chicken egg yolk; PE, 1,2-dipalmitoyl-phosphatidylethanolamine; PS: L-alpha-phosphatidyl-L-serine from bovine brain). In addition, zwitterionic PC/SM/PE (47:39:14) and cationic PC/SM/PE/DOTAP (40:33:12:15; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane) membranes were also prepared in order to dissect the electrostatic and hydrophobic components in the interaction. Changes in tryptophan fluorescence, acrylamide quenching, and resonance energy transfer experiments in the presence of vesicles, as well as the kinetics of insertion in monolayers, indicate that both peptides bind to the three types of membrane at neutral and acidic pH; however, binding is irreversible only at low pH. Membrane-destabilizing and fusogenic activities are triggered by acidification at pH 4-6, characteristic of the endosome. Fluorescence experiments show that VP3-RGD and VP3-RGA induce mixing of lipids and leakage or mixing of aqueous contents in anionic and cationic vesicles at pH 4-6, indicating leaky fusion. Interaction with zwitterionic vesicles (PC/SM/PE) results in leakage without lipid mixing, indicating pore formation. Replacement of aspartic acid in the RGD motif by alanine maintains the membrane-destabilizing properties of the peptide at low pH, but not its antigenicity. Since the RGD tripeptide is related to receptor-mediated cell adhesion and antigenicity, results suggest that receptor binding is not a molecular requirement for fusion. The possible involvement of peptide-induced membrane destabilization in the mechanism of hepatitis A virus infection of hepatocytes by the endosomal route is discussed.  相似文献   

13.
The interactions of phosphatidylcholine (PC) to regions of the myelin basic protein (MBP) was examined. In solid phase binding assays the nature of the binding of unilamellar vesicles of14C-labeled phosphatidylcholine to bovine 18.5 kDa MBP, its N- and C-terminal peptide fragments, photooxidized 18.5 kDa MBP and the mouse 14 kDa protein, with an internal deletion of residues 117–157, was studied. The data were analyzed by computer-generated Scatchard plots in which non-specific binding was eliminated. Non-cooperative, low affinity binding of PC vesicles to MBP was observed, and this binding found to be sensitive to pH and ionic changes. At an ionic strength of 0.1 and pH 7.4, the binding of PC to the 14 kDa mouse MBP exhibited a Kd similar to that obtained with both the N-terminal and photooxidized 18.5 kDa bovine MBP. The studies indicated that the sites of PC interaction with MBP are located in the N-terminal region of the protein. The C-terminal region appeared to modulate the strength of the interaction slightly. Under similar conditions, lysozyme did not bind PC liposomes, and histone bound them nonspecifically.  相似文献   

14.
The interactions of a water-soluble nonmembrane protein aprotinin with multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) from soybean phospholipids were studied using Sephadex G-75 gel chromatography combined with different methods of the analysis of the eluate fractions (fluorescence, light-scattering, turbidity; 31P NMR spectroscopy). The composition of the liposomes mainly containing soybean phosphatidylcholine (PC) was varied by the addition of phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lyso-phosphatidylcholine (lyso-PC). To evaluate the lipid-protein interactions, the amount of aprotinin in the MLV-aprotinin complexes was determined. Lipid-protein interactions were found to strongly depend on the liposome composition, medium pH and ionic strength. These dependencies point to the electrostatic nature of the aprotinin-lipid interactions. 31P NMR spectroscopy of the MLV-aprotinin complexes indicated that aprotinin influences the phospholipid structure in MLV at pH 3.0. In the case of PC:PE:PI and PC:PE:PI:lyso-PC vesicles, aprotinin induced liposome aggregation and a lamellar-to-isotropic phase transition of the phospholipids.  相似文献   

15.
The interaction of cytochrome c (cyt c) with mitochondrial mimetic vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, and heart cardiolipin (PCPECL) was investigated over the 7.4-6.2 pH range by means of turbidimetry and photon correlation spectroscopy. In the presence of cyt c, the decrease of pH induced an increase in vesicle turbidity and mean diameter resulting from vesicle fusion as determined by a rapid decrease in the excimer/monomer ratio of 2-(10-(1-pyrene)-decanoyl)-phosphatidylcholine (PyPC). N-acetylated cyt c and protamine, a positively charged protein, increased vesicle turbidity in a pH-independent manner, whereas albumin did not affect PCPECL vesicle turbidity. pH-dependent turbidity kinetics revealed a role for cyt c-ionizable groups with a pK(a)((app)) of approximately 7.0. The carbethoxylation of these groups by diethylpyrocarbonate prevented cyt c-induced vesicle fusion, although cyt c association to vesicles remained unaffected. Matrix-assisted laser desorption ionization time-of-flight analysis revealed that Lys-22, Lys-27, His-33, and Lys-87 cyt c residues were the main targets for carbethoxylation performed at low pH values (<7.5). In fact, these amino acid residues belong to clusters of positively charged amino acids that lower the pK(a). Thus, at low pH, protonation of these invariant and highly conserved amino acid residues produced a second positively charged region opposite to the Lys-72 and Lys-73 region in the cyt c structure. These two opposing sites allowed two vesicles to be brought together by the same cyt c molecule for fusion. Therefore, a novel pH-dependent site associating cyt c to mitochondrial mimetic membranes was established in this study.  相似文献   

16.
Protease inhibitory activity in jackfruit seed (Artocarpus integrifolia) could be separated into 5 fractions by chromatography on DEAE-cellulose at pH 7.6. A minor fraction (I) that did not bind to the matrix, had antitryptic, antichymotryptic and antielastase activity in the ratio 24:1.9:1.0. Fraction II bound least tightly to the ion exchanger eluting with 0.05 M NaCl and could be resolved into an elastase/chymotrypsin inhibitor and a chymotrypsin/trypsin inhibitor by chromatography on either immobilized trypsin or phenyl Sepharose CL-4B. Fractions III and IV eluted successively with 0.10 M NaCl and 0.15 M NaCl from DEAE-cellulose, inhibited elastase, chymotrypsin and trypsin in the ratio 1.0: 0.53:0.55 and 1.0:8.9:9.8 respectively. Fraction V, most strongly bound to the matrix eluting with 0.3 M NaCl and was a trypsin/chymotrypsin inhibitor accounting for 74% of total antitryptic activity. This inhibitor was purified further. The inhibitor with a molecular weight of 26 kd was found to be a glycoprotein. Galactose, glucose, mannose, fucose, xylose, glucosamine and uronic acid were identified as constitutent units of the inhibitor. Dansylation and electrophoresis in the presence of mercaptoethanol indicated that the inhibitor is made up of more than one polypeptide chain. The inhibitor combined with bovine trypsin and bovine α-chymotrypsin in a stoichiometric manner as indicated by gel chromatography. It had very poor action on subtilisin BPN′, porcine elastase, pronase,Streptomyces caespitosus protease andAspergillus oryzae protease. It powerfully inhibited the caseinolytic activities of rabbit and horse pancreatic preparations and was least effective on human and pig pancreatic extracts. Modification of amino groups, guanido groups and sulphydryl groups of the inhibitor resulted in loss of inhibitory activity. Reduction of disulphide bridges, reduction with sodium borohydride and periodate oxidation also decreased the inhibitory activity.  相似文献   

17.
Turbidity measurements were made of dilute aqueous dispersions of 1,2-dipalmitoyl-l-lecithin as the temperature was varied. In the range from 24 to 33° a decrease in turbidity is associated with the penetration of water between the layers of lipid in the crystalline structure. At the transition to the liquid crystalline form (39–41°) a sharp decrease in turbidity occurs. In solutions of 0.06 M LiCl, 1 mM CaCl2, MgCl2 or 0.05 M PO43 an increase in turbidity resulted at the transition temperature, whereas in 0.1 M NaCl, or quarternary ammonium salts the turbidity decreased. The presence of small amounts of dicetylphosphoric acid mixed with the lecithin decreased the turbidity, and at elevated pH levels there was no change at the transition temperature.  相似文献   

18.
The binding of bovine Factor V, isolated Factor Va, and isolated activation intermediates to single bilayer phospholipid vesicles was studied by light scattering. The vesicles composed of 25% phosphatidylserine and 75% phosphatidylcholine had a mean radius of approximately 163 A as determined by quasi-elastic light scattering. When these vesicles were saturated with Factor V, the radii increased by approximately 120 A in both 0.15 and 1 M NaCl. At saturation, about 35 molecules of Factor V and 141 molecules of Factor Va were bound to each vesicle. Studies of the binding of Factor V and Factor Va at various ionic strengths showed little change in either Kd or n, suggesting that the binding is not electrostatic. The dissociation constants (Kd) and the lipid to protein ratios at saturation, moles/mol (n), obtained by relative light scattering intensities were: Factor V (Kd = 4.3 X 10(-8) M, n = 214); isolated Factor Va (Kd = 1.7 X 10(-7) M, n = 57); component B, Mr = 205,000 (Kd = 1.8 X 10(-7) M, n = 140); component C, Mr = 150,000 (Kd = 7.0 X 10(-7) M, n = 136); component D, Mr = 94,000 (no binding could be demonstrated); component E, Mr = 74,000 (Kd = 3.8 X 10(-7) M, n = 42). The results presented here indicate that the lower Kd exhibited by Factor V compared to Factor Va (components D and E) is primarily due to the interaction present within the component C portion of the molecule which is destroyed when component C is further cleaved to give component D. The interactions responsible for the binding of Factor Va are expressed in component E as well as in its precursor peptide component B. Dissociation of components D and E by the addition of EDTA indicate that component E alone is responsible for the interaction of bovine Factor Va with phospholipid.  相似文献   

19.
Abstract

The interactions of a water-soluble nonmembrane protein aprotinin with multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) from soybean phospholipids were studied using Sephadex G-75 gel chromatography combined with different methods of the analysis of the eluate fractions (fluorescence, light-scattering, turbidity; 31P NMR spectroscopy). The composition of the liposomes mainly containing soybean phosphatidylcholine (PC) was varied by the addition of phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lyso-phosphatidylcholine (lyso-PC). To evaluate the lipid-protein interactions, the amount of aprotinin in the MLV–aprotinin complexes was determined. Lipid–protein interactions were found to strongly depend on the liposome composition, medium pH and ionic strength. These dependencies point to the electrostatic nature of the aprotinin-lipid interactions. 31P NMR spectroscopy of the MLV–aprotinin complexes indicated that aprotinin influences the phospholipid structure in MLV at pH 3.0. In the case of PC:PE:PI and PC:PE:PI:lyso-PC vesicles, aprotinin induced liposome aggregation and a lamellar-to-isotropic phase transition of the phospholipids.  相似文献   

20.
The addition of bovine serum albumin (BSA) to 25 ± 5 nm diameter single bilayer phosphatidylcholine (PC) vesicles (SBV) (pH 3.5) gives rise to readily visible transient turbidity. Studies of this system, employing a series of techniques, including time-dependent turbidity changes, membrane filtration, centrifugation, Sepharose chromatography and freeze fracture electron microscopy demonstrated that the process involves aggregation and fusion of the vesicles. At least three distinct time-dependent steps have been characterized: (1) the rapid initial formation (in approx. 5 min) of large aggregates (responsible for the visible turbidity) composed of SBV interconnected by BSA in its F form. The formation of these aggregates may be reversed by raising the pH or adding excess BSA to the system at this stage; (2) spontaneous collapse of these large aggregates, in an irreversible step, to form a heterogeneous population of vesicles; (3) fusion produces as the final product of the process, a relatively homogeneous population of larger (50 ± 10 nm diameter) vesicles. This system serves as a convenient and simple model system for the detailed study of protein-mediated aggregation and fusion of membranes at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号