首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of WEB-2086, a specific antagonist of platelet-activating factor (PAF), on the development of antigen-induced airway hyperresponsiveness and inflammation in sheep (n = 8). For these studies, airway responsiveness was determined from slopes of carbachol dose-response curves (DRC) performed at base line (prechallenge) and 2 h after Ascaris suum antigen challenges in the following three protocols: 1) antigen challenge alone (control trial), 2) WEB-2086 (1 mg/kg iv) given 30 min before antigen challenge (WEB pretreatment), and 3) WEB-2086 given 2 h after antigen challenge, immediately before the postchallenge DRC (WEB posttreatment). Airway inflammation was assessed by bronchoalveolar lavage (BAL) before antigen challenge and after the postchallenge DRC for each trial. A. suum challenge resulted in acute increases in specific lung resistance that were not different among the three trials. Antigen challenge (control trial) caused a 93% increase (P less than 0.05) in the slope of the carbachol DRC when compared with the prechallenge value. WEB pretreatment (1 mg/kg) reduced (P less than 0.05) this antigen-induced hyperresponsiveness, whereas pretreatment with a 3-mg/kg dose completely prevented it. WEB posttreatment was ineffective in blocking this hyperresponsiveness. BAL neutrophils increased after antigen challenge in the control trial and when WEB-2086 was given after antigen challenge (P less than 0.05). Pretreatment with WEB-2086 (1 or 3 mg/kg) prevented this neutrophilia. This study provides indirect evidence for antigen-induced PAF release in vivo and for a role of endogenous PAF in the modulation of airway responsiveness and airway inflammation after antigen-induced bronchoconstriction in sheep.  相似文献   

2.
We studied dogs neonatally sensitized to ragweed and their littermate controls at 4, 6, 8, 10, 12, and 15 mo of age. Acute allergic airway response to inhalation of ragweed in the sensitized dogs was marked (greater than 12-fold increase from base line) and reproducible at all times. Nonallergic airway responsiveness, measured as the concentration of acetylcholine required to increase airway resistance by 5 cmH2O.l-1.s (PC5), increased in sensitized and decreased in nonsensitized dogs from 4 to 15 mo of age (P less than 0.01). Before antigen, at 12 and 15 mo, sensitized dogs were significantly (P less than 0.05) more responsive to acetylcholine than controls. Six hours after antigen, sensitized dogs were 11-fold more responsive (P less than 0.005) than controls at those times. More eosinophils and mast cells and fewer macrophages (P less than 0.05) were present in bronchoalveolar lavage (BAL) from 12- and 15-mo-old sensitized dogs than their controls. BAL fluid histamine was higher (P less than 0.05) in sensitized than control dogs. Regression analysis revealed r = -0.75 (P = 0.003) between BAL mast cells and PC5 in sensitized dogs and R2 = 0.89 for PC5 and BAL mast cells, macrophages, and eosinophils. Neonatally sensitized dogs represent an excellent animal model in which to study the pathophysiology of asthma.  相似文献   

3.
We examined the effects of nedocromil sodium, a new drug developed for the treatment of reversible obstructive airway disease, on allergen-induced early and late bronchial responses and the development of airway hyperresponsiveness 24 h after challenge in nine allergic sheep. On occasions greater than 2 wk apart the sheep were treated with 1) placebo aerosol (buffered saline) before and 3 h after antigen challenge, 2) an aerosol of nedocromil sodium (1 mg/kg in 3 ml buffered saline) before antigen challenge and placebo 3 h after challenge, and 3) placebo aerosol before and nedocromil sodium aerosol 3 h after challenge. Early and late bronchial responses were determined by measuring specific lung resistance (sRL) before and periodically after challenge. Airway responsiveness was assessed by determining from dose-response curves the carbachol concentration (in % wt/vol) that increased sRL to 5 cmH2O/s. In the placebo trial, antigen challenge resulted in early and late increases in sRL over a base line of 353 +/- 32 and 131 +/- 17% (SE), respectively. Both early and late increases in sRL were blocked (P less than 0.05) when the sheep were pretreated with nedocromil sodium. When nedocromil was given after the early response, the late response was reduced significantly. Eight of nine sheep developed airway hyperresponsiveness 24 h after antigen challenge. In these eight sheep, carbachol concentration before antigen challenge was 2.6 +/- 0.3%, 24 h later carbachol concentration was significantly lower (1.8 +/- 0.3%). Both nedocromil sodium treatments blocked (P less than 0.05) this antigen-induced airway hyperresponsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We compared the development of antigen-induced airway hyperresponsiveness (AHR) 24 h after challenge with Ascaris suum antigen in allergic sheep with acute (n = 7) and with dual (n = 7) airway responses and then attempted to modify this AHR. Cholinergic airway responsiveness was determined by measuring the carbachol dose required to increase specific lung resistance (sRL) 150% (i.e., PC150). Subsequently the sheep were challenged with antigen and sRL was measured at predetermined times to document the presence or absence of a late response. PC150 was redetermined 24 h later followed by bronchoalveolar lavage (BAL) to assess inflammation. Only dual responders developed AHR (PC150 decreased, P less than 0.05). There were no significant differences in BAL between the two groups. Six dual responders were then, on separate occasions (greater than or equal to 3 wk), pretreated with placebo, indomethacin (2 mg/kg iv), or a leukotriene antagonist, FPL-57231 (30 mg inhaled). Neither agent significantly affected the acute response to antigen. Only FPL pretreatment blocked the late response, but both agents blocked the antigen-induced AHR 24 h later. BAL at 24 h showed no significant differences. These results indicate that only dual responders develop AHR 24 h after antigen challenge. This AHR appears independent of the late increase in sRL or the severity of pulmonary inflammation. AHR appears to be sensitive to agents that interfere with the early release or actions of cyclooxygenase and lipoxygenase metabolites in dual responders.  相似文献   

5.
The relationship between airway responsiveness to inhaled antigen and histamine, immunologic release of lung histamine, immunologic responsiveness of skin, and specific immunoglobulin E (IgE) antibodies were examined in 11 inbred allergic dogs immunized with extracts of ragweed and grass and 5 nonimmunized control dogs from the same colony. Airway responsiveness to antigen and histamine was characterized by the doses that increased the airflow resistance of the total respiratory system to twice the control values (ED200). Highly significant correlations were found between airway responsiveness and cutaneous responsiveness to antigen and other immunologic characteristics (e.g., IgE and histamine released from lung by inhaled antigen) in all dogs. In ragweed-sensitized dogs, there was an inverse correlation between immunologic responsiveness (reflected by the cutaneous response to antigen and histamine released from lung by inhaled antigen) and nonimmunologic responsiveness of airways (histamine ED200: r = 0.73, P less than 0.05 and r = 0.75, P less than 0.01, respectively). Antigen ED200 was also correlated with histamine release from lung after antigen inhalation (r = 0.74; P less than 0.01). We conclude that airway reactions to inhaled antigen in allergic dogs are dependent not only on immunologic factors but also on the degree of nonimmunologic airway responsiveness to histamine and that these factors are correlated inversely.  相似文献   

6.
The effects of repeated antigen inhalation on airway cellular composition and airway responsiveness were examined in primates. Airway cellular composition was assessed by bronchoalveolar lavage (BAL), and airway responsiveness was measured as the bronchoconstrictor response to cumulative methacholine dose-response determinations over the course of a 10-wk study. Control animals, exposed to repeated vehicle inhalation challenges, were tested in parallel with the antigen-challenged group. Repeated antigen inhalation resulted in a prolonged inflammatory reaction characterized by a large increase in airway eosinophils (3 +/- 1 to 59 +/- 15%, P less than 0.01). Airway eosinophilia was associated with an increase in airway responsiveness as indicated by a leftward shift in the methacholine dose-response curves, an increase in the slope of the dose-response curves, and a decrease in PC100 values (the dose of methacholine required to cause a 100% increase in lung resistance). The number of BAL eosinophils and the level of eosinophil major basic protein in BAL correlated significantly with methacholine PC100 values (r = 0.61, P less than 0.01 and r = 0.64, P less than 0.01, respectively). Histological examination of lung biopsy samples taken at week 10 of the study demonstrated a striking infiltration of eosinophils in the antigen-challenged animals. These results support earlier observations that demonstrated an association between increases in airway eosinophils and increases in airway responsiveness and suggest that eosinophils are involved in the pathogenesis of hyperresponsive airways.  相似文献   

7.
Ozone increases susceptibility to antigen inhalation in allergic dogs   总被引:1,自引:0,他引:1  
To determine whether O3 exposure increased airway responsiveness to antigen inhalation, we studied airway responsiveness to acetylcholine (ACh) and Ascaris suum antigen (AA) before and after O3 in dogs both sensitive and insensitive to AA. Airway responsiveness was assessed by determining the provocative concentration of ACh and AA aerosols that increased respiratory resistance (Rrs) to twice the base-line value. O3 (3 parts per million) increased airway responsiveness to ACh in dogs both sensitive and insensitive to AA, and it significantly decreased the ACh provocation concentration from 0.541 +/- 0.095 to 0.102 +/- 0.047 (SE) mg/ml (P less than 0.01; n = 10). AA aerosols, even at the highest concentration in combination with O3, did not increase Rrs in dogs insensitive to AA. However, O3 increased airway responsiveness to AA in AA-sensitive dogs and significantly decreased log AA provocation concentration from 2.34 +/- 0.22 to 0.50 +/- 0.17 (SE) log protein nitrogen units/ml (P less than 0.01; n = 7). O3-induced hyperresponsiveness to ACh returned to the base-line level within 2 wk, but hyperresponsiveness to AA continued for greater than 2 wk. The plasma histamine concentration after AA challenge was significantly higher after than before O3 (P less than 0.01). Intravenous infusion of OKY-046 (100 micrograms.kg-1.min-1), an inhibitor of thromboxane synthesis, inhibited the O3-induced increase in responsiveness to ACh, but it had no effects on the O3-induced increase in responsiveness to AA and the increase in the plasma histamine concentration. These results suggest that O3 increases susceptibility to the antigen in sensitized dogs via a different mechanism from that of O3-induced muscarinic hyperresponsiveness.  相似文献   

8.
This study presents an antigen-dependent model of biphasic pulmonary changes to Ascaris suum in conscious squirrel monkeys. Animals with strong positive skin reactivity towards A. suum were trained to sit quietly in chairs and to breathe through face masks. Dynamic compliance (Cdyn) and pulmonary resistance (RL) were measured in these conscious animals before and for a period of 11 h after administration of an aerosol of Ascaris or ragweed antigen. The aerosol of Ascaris antigen induced reproducible increases (42%) in RL (P less than 0.001) and decreases (17%) in Cdyn (P less than 0.01) that peaked respectively 5 and 35 min after antigen challenge and lasted 60-90 min. After recovery, a second bronchoconstriction began between 2 and 8 h and peaked between 4 and 10 h after antigen challenge. Decreases in Cdyn (41%) were significantly greater (P less than 0.003) whereas mean increases in RL (44%) were similar during the late phase as compared with the first phase. The mean Cdyn decreases lasted a minimum of 2 h, whereas RL increases lasted less than 60 min. The time course of the responses varied from animal to animal but changes in individual animals were reproducible over a period of 6 mo. No significant correlation was observed between the cutaneous and the pulmonary responses to Ascaris and the late response was not reversed by aerosol administration of salbutamol (1.0 mg/ml). As a negative control animals were exposed to an aerosol of ragweed extract after which no immediate or late pulmonary response were observed. The results suggest that this primate model may be useful to study the pathophysiology of asthma in humans.  相似文献   

9.
We studied the effect of prostaglandin F2 alpha (PGF2 alpha) on the responsiveness of pulmonary airways in dogs. Airway responsiveness was assessed by determining the bronchoconstrictor response to increasing concentrations of acetylcholine aerosol delivered to the airways. In each of five dogs, we determined responsiveness during treatment with physiologic saline, histamine, or PGF2 alpha aerosols. The doses of histamine and PGF2 alpha were determined by establishing the largest dose of each which could be given to the dog without causing bronchoconstriction (subthreshold doses). We found that airway responsiveness was not significantly different during histamine treatment than after saline, however, responsiveness increased during treatment with PGF2 alpha. In addition, the hyperresponsiveness induced by PGF2 alpha was prevented by pretreatment with the ganglion blocking drug hexamethonium (5 mg/kg given intravenously). The results show that PGF2 alpha specifically increases the responsiveness of pulmonary airways in doses that do not cause bronchoconstriction, and suggest that the hyperresponsiveness involves a neural mechanism such as increased responsiveness of airway sensory nerves.  相似文献   

10.
To determine whether thromboxane A2 may be involved in ozone (O3)-induced airway hyperresponsiveness, we studied the effect of a thromboxane synthase inhibitor (OKY-046, 100 micrograms X kg-1 X min-1 iv) in five dogs exposed to O3. Airway responsiveness was assessed by determining the provocative concentration of acetylcholine aerosol that increased total pulmonary resistance by 5 cmH2O X l-1 X s. O3 (3 ppm) increased airway responsiveness as demonstrated by a decrease in acetylcholine provocative concentration from 2.42 (geometric SEM = 1.64) to 0.14 mg/ml (geometric SEM = 1.30). OKY-046 significantly inhibited this effect without altering pre-O3 responsiveness or the O3-induced increase in neutrophils and airway epithelial cells in bronchoalveolar lavage fluid. To further examine the role of thromboxane A2, we studied the effect of a thromboxane A2 mimetic, U-46619, on airway responsiveness in five additional dogs. U-46619 in subthreshold doses (i.e., insufficient to increase base-line pulmonary resistance) caused a fourfold increase in airway responsiveness to acetylcholine. Subthreshold doses of histamine had no effect. These results suggest that thromboxane A2 may be an important mediator of O3-induced airway hyperresponsiveness.  相似文献   

11.
Using cellular and biochemical characteristics of bronchoalveolar lavage (BAL) liquid as an index of inflammation, we examined the relationships between change of airway caliber after a deep inhalation (DI), degree of base-line airway hyperresponsiveness, and peripheral airway inflammation in a group of 16 atopic asymptomatic mild asthmatics and 6 normal subjects. Compared with normal subjects, asthmatics demonstrated 1) significantly higher BAL concentrations of histamine, total protein, the sulfidopeptide leukotrienes (SRS-A), and leukotiene B4; 2) a decrease in specific airway conductance (sGaw) with a DI at base line vs. an increase in normal subjects (before vs. after percent change in sGaw, -10 vs. 12, P less than 0.05); and 3) no significant difference in BAL total cell count or leukocyte differential. Significant correlations were demonstrated between 1) percent of BAL eosinophils vs. degree of airway hyperresponsiveness; 2) base-line level of airway obstruction vs. degree of hyperresponsiveness; 3) effects of a DI vs. BAL concentrations of eosinophils, total protein, and histamine; 4) base-line forced expired volume in 1 s vs. BAL concentrations of total protein and histamine; and 5) BAL concentrations of the various mediators with each other. These data support the notion that 1) the response to a DI in mild, stable asthmatics represents a physiological indicator of peripheral obstruction because of inflammation and 2) this inflammation is associated with increases in several known mediators of airway inflammation and hyperreactivity.  相似文献   

12.
The effect of nedocromil sodium given as an aerosol on the immediate lung hyperreactivity and lung inflammation caused by a 2-h exposure to 400 ppm SO2 has been studied in dogs. Exposure to SO2 caused an immediate increase in bronchial responsiveness to histamine aerosol that lasted for approximately 2 h. The total number of cells recovered by bronchial lavage increased postexposure. Initially this increase was caused by epithelial cells (0.25 and 1 h) and later by neutrophils (1, 2, 3, and 4 h). There was no significant change in the numbers of lymphocytes, macrophages, eosinophils, goblet cells, or mast cells in the lavages. Nedocromil sodium (approximately 8 mg) given as a nebulized aerosol before and after SO2 exposure prevented the increase in lung reactivity and attenuated the increase in the total number of cells (epithelial cells and neutrophils) in the lung lavages for the 4 h after exposure. Nedocromil sodium did not affect the reactivity of normal dogs to histamine aerosol. Nedocromil sodium appears to act as an anti-inflammatory agent in this model of lung inflammation, preventing an increase in lung reactivity and reducing cell infiltration. The mechanism of action of nedocromil sodium in this model is unknown.  相似文献   

13.
Histamine can be recovered from the blood of ragweed-sensitized dogs after aerosol antigen challenge, although its source is unknown. Neutrophils and eosinophils have been recovered from bronchoalveolar lavage fluid (BALF) obtained under identical conditions. We investigated the time course of changes in histamine levels in plasma and BALF taken from ragweed-sensitized dogs after aerosol challenge. Changes in the numbers of circulating neutrophils, eosinophils, lymphocytes, monocytes, and platelets were also studied. After 3 min, total pulmonary resistance (RL) was maximally increased and systolic blood pressure was maximally decreased. Histamine levels in plasma and BALF were increased and circulating eosinophils and neutrophils were decreased. After 15 min, platelet numbers were reduced. By 90 min, changes in RL, blood pressure, plasma and BALF histamine concentrations, and circulating neutrophils and eosinophils had returned to base-line values, but platelet numbers remained significantly decreased. Sham challenge caused no significant changes in any of these variables. Intravenous administration of histamine in doses large enough to attain plasma levels comparable with those achieved after aerosol antigen challenge resulted in no concomitant rise in BALF histamine levels. We conclude that antigen challenge in sensitized dogs causes increases in BALF and plasma histamine levels and is associated with a reduction in circulating neutrophils, eosinophils, and platelets. It is likely that antigen causes airway mast cells to release mediators that move down a concentration gradient from the airways to the pulmonary circulation.  相似文献   

14.
Arachidonic acid metabolites have previously been demonstrated to mediate the airway hyperresponsiveness observed in guinea pigs and dogs after exposure to ozone. Guinea pigs were treated with indomethacin (a cyclooxygenase inhibitor), U-60,257 (piriprost, a 5-lipoxygenase inhibitor), or BW775c (a lipoxygenase and cyclooxygenase inhibitor) and exposed to air or 3 ppm TDI. Airway responsiveness to acetylcholine aerosol was examined 2 h after exposure. In control animals, the provocative concentration of acetylcholine which caused a 200% increase in pulmonary resistance over baseline (PC200) was significantly less (p less than 0.05) after exposure to TDI (8.6 +/- 2.0 mg/ml, geometric mean + geometric SE, n = 10) than after exposure to air (23.9 + 2.5 mg/ml, n = 14). The airway responsiveness to acetylcholine in animals treated with indomethacin or piriprost and exposed to TDI was not different from that of control animals exposed to TDI. Treatment with BW755c enhanced the airway hyperresponsiveness observed in animals exposed to TDI without altering the PC200 of animals exposed to air. The PC200 of animals treated with BW755c and exposed to TDI (2.3 + 0.8 mg/ml, n = 8) was significantly lower than the PC200 of control animals exposed to TDI (p less than 0.025). These results suggest that products of arachidonic acid metabolism are not responsible for TDI-induced airway hyperresponsiveness in guinea pigs. BW755c, however, appears to potentiate the TDI-induced airway hyperresponsiveness to acetylcholine by an as yet unidentified mechanism.  相似文献   

15.
Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in all dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.  相似文献   

16.
The increase in airway responsiveness induced by O3 exposure in dogs is associated with airway epithelial inflammation, as evidenced by an increase in the number of neutrophils (polymorphonuclear leukocytes) found in epithelial biopsies and in bronchoalveolar lavage fluid. We investigated in 10 healthy, human subjects whether O3-induced hyperresponsiveness was similarly associated with airway inflammation by examining changes in the types of cells recovered in bronchoalveolar lavage fluid obtained after exposure to air or to O3 (0.4 or 0.6 ppm). We also measured the concentrations of cyclooxygenase and lipoxygenase metabolites of arachidonic acid in lavage fluid. We measured airway responsiveness to inhaled methacholine aerosol before and after each exposure and performed bronchoalveolar lavage 3 h later. We found more neutrophils in the lavage fluid from O3-exposed subjects, especially in those in whom O3 exposure produced an increase in airway responsiveness. We also found significant increases in the concentrations of prostaglandins E2, F2 alpha, and thromboxane B2 in lavage fluid from O3-exposed subjects. These results show that in human subjects O3-induced hyperresponsiveness to methacholine is associated with an influx of neutrophils into the airways and with changes in the levels of some cyclooxygenase metabolites of arachidonic acid.  相似文献   

17.
The effect of O3 exposure (3 ppm, 1 h) on the in vivo and in vitro airway responsiveness, as well as the changes in cell contents in bronchoalveolar lavage (BAL) fluid, were evaluated 16-18 h after O3 exposure in sensitized and nonsensitized male guinea pigs. The sensitization procedure was performed through repeated inhalation of ovalbumin for 3 wk. Increase in pulmonary insufflation pressure produced by the excitatory nonadrenergic noncholinergic (eNANC) system, histamine, and antigen were assessed in in vivo conditions, whereas airway responsiveness to histamine and substance P was evaluated in in vitro conditions by use of tracheal chains with or without epithelium and lung parenchymal strips. We found that O3 exposure 1) increased the neutrophil content in BAL fluids in both sensitized and nonsensitized guinea pigs, 2) caused hyperresponsiveness to eNANC stimulation in nonsensitized guinea pigs (although combination of sensitization and O3 exposure paradoxically abolished the hyperresponsiveness to eNANC stimulation), 3) increased the in vivo bronchoconstrictor responses to histamine and antigen, 4) caused hyperresponsiveness to substance P in nonsensitized tracheae with or without epithelium and in sensitized tracheae with epithelium, 5) did not modify the responsiveness to histamine in tracheae with or without epithelium (and in addition, epithelium removal caused hyperresponsiveness to histamine even in those tracheae exposed to O3), and 6) produced hyperresponsiveness to histamine in lung parenchymal strips either from sensitized or nonsensitized guinea pigs.  相似文献   

18.
The effect of DP-1904, a novel thromboxane (TX) synthetase inhibitor, on airway hyperresponsiveness was studied in actively sensitized guinea-pigs. Airway hyperresponsiveness to intravenous ACh was observed at 3 and 7 h after aerosolized antigen challenge. In the model, a significant correlation between increases of respiratory resistance and microvascular leakage was observed, corresponding to the elevation of TXB2 in bronchoalveolar lavage fluid (BALF) in the early phase. DP-1904, at doses of 3 mg/kg or higher given orally one hour prior to the antigen challenge, inhibited the TXB2 production and the development of airway hyperresponsiveness in the early phase. Further, DP-1904 significantly suppressed the accumulation of lymphocytes in BALF and airway hyperresponsiveness in the late phase, although it only slightly decreased the mobilization of eosinophils and neutrophils. The results suggest that TXA2 is possibly involved in the development of airway hyperresponsiveness, and DP-1904 prevented the airway hyperresponsiveness via inhibition of TXA2 production and regulation of inflammatory cells.  相似文献   

19.
Heme oxygenase (HO), the heme-degrading enzyme, has shown anti-inflammatory effects in several models of pulmonary diseases. HO is induced in airways during asthma; however, its functional role is unclear. Therefore, we evaluated the role of HO on airway inflammation [evaluated by bronchoalveolar lavage (BAL) cellularity and BAL levels of eotaxin, PGE(2), and proteins], mucus secretion (evaluated by analysis of MUC5AC gene expression and periodic acid-Schiff staining), oxidative stress (evaluated by quantification of 4-hydroxynonenal adducts and carbonylated protein levels in lung homogenates), and airway responsiveness to histamine in ovalbumin (OVA)-sensitized and multiple aerosol OVA or saline-challenged guinea pigs (6 challenges, once daily, OVA group and control group, respectively). Airway inflammation, mucus secretion, oxidative stress, and responsiveness were significantly increased in the OVA group compared with the control group. HO upregulation by repeated administrations of hemin (50 mg/kg i.p.) significantly decreased airway responsiveness in control animals and airway inflammation, mucus secretion, oxidative stress, and responsiveness in OVA animals. These effects were reversed by the concomitant administration of the HO inhibitor tin protoporphyrin-IX (50 micromol/kg i.p.). Repeated administrations of tin protoporphyrin-IX alone significantly increased airway responsiveness in control animals but did not modify airway inflammation, mucus secretion, oxidative stress, and responsiveness in OVA animals. These results suggest that upregulation of the HO pathway has a significant protective effect against airway inflammation, mucus hypersecretion, oxidative stress, and hyperresponsiveness in a model of allergic asthma in guinea pigs.  相似文献   

20.
Allergic sheep with antigen-induced early and late responses were used to determine whether airway hyperresponsiveness (AHR) to carbachol is present during the late response and whether blocking the late response with the leukotriene D4 (LTD4) antagonist MK-571 also blocks this AHR. To do this, we first showed that MK-571 blocked the antigen-induced late response, and then, in a separate study, we determined the effect of MK-571 treatment on airway responsiveness 6 h after antigen challenge (at the start of the late response). MK-571 (5 mg, by metered dose inhaler) given 30 min before and 4 h after Ascaris suum challenge had no effect on the acute response to antigen but blocked (P less than 0.05) the late response compared with placebo (n = 7). In the second study (n = 6), the antigen-induced acute increases in mean specific lung resistance (sRL) were also similar in the placebo (249%) and drug trials (247%). By 6 h postchallenge, however, mean sRL in the placebo trial began to increase (54%, P less than 0.05), whereas in the drug trial mean sRL was baseline. Nevertheless, AHR was apparent in both trials as indicated by a mean twofold leftward shift in the dose-response curves to inhaled carbachol (P less than 0.05 vs. prechallenge). Bronchoalveolar lavage at 6 h showed that MK-571 did not prevent the inflammatory cell influx into the lung. These observations suggest that although LTD4 may be a mediator of the late response in sheep, it is not a primary mediator affecting cholinergic AHR during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号