首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Production of soluble full-length nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) has been shown to be problematic and requires the addition of salts, glycerol, and detergents. In an effort to improve the solubility of NS5B, the hydrophobic C terminus containing 21 amino acids was removed, yielding a truncated NS5B (NS5BΔCT) which is highly soluble and monodispersed in the absence of detergents. Fine deletional analysis of this region revealed that a four-leucine motif (LLLL) in the hydrophobic domain is responsible for the solubility profile of the full-length NS5B. Enzymatic characterization revealed that the RNA-dependent RNA polymerase (RdRp) activity of this truncated NS5B was comparable to those reported previously by others. For optimal enzyme activity, divalent manganese ions (Mn2+) are preferred rather than magnesium ions (Mg2+), whereas zinc ions (Zn2+) inhibit the RdRp activity. Gliotoxin, a known poliovirus 3D RdRp inhibitor, inhibited HCV NS5B RdRp in a dose-dependent manner. Kinetic analysis revealed that HCV NS5B has a rather low processivity compared to those of other known polymerases.  相似文献   

2.
The hepatitis C virus (HCV) genotype 2a isolate JFH1 represents the only cloned HCV wild-type sequence capable of efficient replication in cell culture as well as in vivo. Previous reports have pointed to NS5B, the viral RNA-dependent RNA polymerase (RdRp), as a major determinant for efficient replication of this isolate. To understand the contribution of the JFH1 NS5B gene at the molecular level, we aimed at conferring JFH1 properties to NS5B from the closely related J6 isolate. We created intragenotypic chimeras in the NS5B regions of JFH1 and J6 and compared replication efficiency in cell culture and RdRp activity of the purified proteins in vitro, revealing more than three independent mechanisms conferring the role of JFH1 NS5B in efficient RNA replication. Most critical was residue I405 in the thumb domain of the polymerase, which strongly stimulated replication in cell culture by enhancing overall de novo RNA synthesis. A structural comparison of JFH1 and J6 at high resolution indicated a clear correlation of a closed-thumb conformation of the RdRp and the efficiency of the enzyme at de novo RNA synthesis, in accordance with the proposal that I405 enhances de novo initiation. In addition, we identified several residues enhancing replication independent of RdRp activity in vitro. The functional properties of JFH1 NS5B could be restored by a few single-nucleotide substitutions to the J6 isolate. Finally, we were able to enhance the replication efficiency of a genotype 1b isolate with the I405 mutation, indicating that this mechanism of action is conserved across genotypes.  相似文献   

3.
Zhang C  Cai Z  Kim YC  Kumar R  Yuan F  Shi PY  Kao C  Luo G 《Journal of virology》2005,79(14):8687-8697
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses multiple enzyme activities. The N-terminal one-third of NS3 primarily functions as a serine protease, while the remaining two-thirds of NS3 serve as a helicase and nucleoside triphosphatase. Whether the multiple enzyme activities of NS3 are functionally interdependent and/or modulated by other viral NS proteins remains unclear. We performed biochemical studies to examine the functional interdependence of the NS3 protease and helicase domains and the modulation of NS3 helicase by NS5B, an RNA-dependent RNA polymerase (RdRp). We found that the NS3 protease domain of the full-length NS3 (NS3FL) enhances the NS3 helicase activity. Additionally, HCV RdRp stimulates the NS3FL helicase activity by more than sevenfold. However, the helicase activity of the NS3 helicase domain was unaffected by HCV RdRp. Glutathione S-transferase pull-down as well as fluorescence anisotropy results revealed that the NS3 protease domain is required for specific NS3 and NS5B interaction. These findings suggest that HCV RdRp regulates the functions of NS3 during HCV replication. In contrast, NS3FL does not increase NS5B RdRp activity in vitro, which is contrary to a previously published report that the HCV NS3 enhances NS5B RdRp activity.  相似文献   

4.
5.
6.
The NS5B protein of the hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) (S.-E. Behrens, L. Tomei, and R. De Francesco, EMBO J. 15:12-22, 1996) that is assumed to be required for replication of the viral genome. To further study the biochemical and structural properties of this enzyme, an NS5B-hexahistidine fusion protein was expressed with recombinant baculoviruses in insect cells and purified to near homogeneity. The enzyme was found to have a primer-dependent RdRp activity that was able to copy a complete in vitro-transcribed HCV genome in the absence of additional viral or cellular factors. Filter binding assays and competition experiments showed that the purified enzyme binds RNA with no clear preference for HCV 3'-end sequences. Binding to homopolymeric RNAs was also examined, and the following order of specificity was observed: poly(U) > poly(G) > poly(A) > poly(C). An inverse order was found for the RdRp activity, which used poly(C) most efficiently as a template but was inactive on poly(U) and poly(G), suggesting that a high binding affinity between polymerase and template interferes with processivity. By using a mutational analysis, four amino acid sequence motifs crucial for RdRp activity were identified. While most substitutions of conserved residues within these motifs severely reduced the enzymatic activities, a single substitution in motif D which enhanced the RdRp activity by about 50% was found. Deletion studies indicate that amino acid residues at the very termini, in particular the amino terminus, are important for RdRp activity but not for RNA binding. Finally, we found a terminal transferase activity associated with the purified enzyme. However, this activity was also detected with NS5B proteins with an inactive RdRp, with an NS4B protein purified in the same way, and with wild-type baculovirus, suggesting that it is not an inherent activity of NS5B.  相似文献   

7.
Hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells, and as a consequence is an attractive target for selective inhibition. This paper describes the discovery of a novel family of HCV NS5B non-nucleoside inhibitors inspired by the bioisosterism between sulfonamide and phosphonamide. Systematic structural optimization in this new series led to the identification of IDX375, a potent non-nucleoside inhibitor that is selective for genotypes 1a and 1b. The structure and binding domain of IDX375 were confirmed by X-ray co-crystalisation study.  相似文献   

8.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), encoded by nonstructural protein 5B (NS5B), is absolutely essential for the viral replication. Here we describe the development, characterization, and functional properties of the panel of monoclonal antibodies (mAbs) and specifically describe the mechanism of action of two mAbs inhibiting the NS5B RdRp activity. These mAbs recognize and bind to distinct linear epitopes in the fingers subdomain of NS5B. The mAb 8B2 binds the N-terminal epitope of the NS5B and inhibits both primer-dependent and de novo RNA synthesis. mAb 8B2 selectively inhibits elongation of RNA chains and enhances the RNA template binding by NS5B. In contrast, mAb 7G8 binds the epitope that contains motif G conserved in viral RdRps and inhibits only primer-dependent RNA synthesis by specifically targeting the initiation of RNA synthesis, while not interfering with the binding of template RNA by NS5B. To reveal the importance of the residues of mAb 7G8 epitope for the initiation of RNA synthesis, we performed site-directed mutagenesis and extensively characterized the functionality of the HCV RdRp motif G. Comparison of the mutation effects in both in vitro primer-dependent RdRp assay and cellular transient replication assay suggested that mAb 7G8 epitope amino acid residues are involved in the interaction of template-primer or template with HCV RdRp. The data presented here allowed us to describe the functionality of the epitopes of mAbs 8B2 and 7G8 in the HCV RdRp activity and suggest that the epitopes recognized by these mAbs may be useful targets for antiviral drugs.  相似文献   

9.
Protein-RNA interaction plays a critical role in regulating RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp). RNAs of 7 nucleotides (nt) or longer had affinities 5-fold better than an RNA of 5 nt, suggesting a minimal length required for binding. To identify RNA contact sites on the HCV RdRp, a biotinylated 7-nt RNA capable of directing de novo initiation was used in a process that coupled reversible formaldehyde cross-linking, RNA affinity chromatography, and mass spectrometry. By this process, we identified 18 peptides cross-linked to the 7-nt RNA. When these identified peptides were overlaid on the three-dimensional structures of NS5B, most mapped to the fingers subdomain, connecting loops between fingers and thumb subdomains and in the putative RNA binding channel. Two of the identified peptides resided in the active site cavity of the RdRp. Recombinant HCV RdRp with single residue changes in likely RNA contact sites were generated and characterized for effects on HCV RdRp activity. Mutant proteins had significant effects on cross-linking to 7-nt RNA and reduced RNA synthesis in vitro by 2- to 20-fold compared with wild type protein. When the mutations were tested for the replication of HCV RNA in the context of the cells transfected with the HCV subgenomic replicon, all except one prevented colony formation, indicating a defect in HCV RNA replication. These biochemical and functional analyses identified a number of residues in the HCV RdRp that are important for HCV RNA synthesis.  相似文献   

10.
11.
Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn(2+) than in the presence of Mg(2+). When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a "copy-back" mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3' end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (>/=50 microM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.  相似文献   

12.
Novel inhibitors of hepatitis C virus RNA-dependent RNA polymerases   总被引:1,自引:0,他引:1  
Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma worldwide-and is the main cause of adult liver transplants in developed nations. We have identified a class of novel and specific inhibitors of HCV NS5B RNA-dependent RNA polymerase (RdRp) activity in vitro. Characterization of two such inhibitors, COMPOUND1 (5-(4-chlorophenylmethylene)-3-(benzenesulfonylamino)-4-oxxo-2-thionothiazolidine) and COMPOUND2 (5-(4-bromophenylmethylene)-3-(benzenesulfonylamino)-4-oxxo-2-thionothiazolidine), is reported here. With IC(50) values of 0.54muM and 0.44muM, respectively, they are reversible and non-competitive with nucleotides. Biochemical and structural studies have suggested that these compounds can inhibit the initiation of the RdRp reaction. Interestingly, these inhibitors appear to form a reversible covalent bond with the NS5B cysteine 366, a residue that is not only conserved among all HCV genotypes and a large family of viruses but also required for full NS5B RdRp activity. This may reduce the potential resistance of the viruses to this class of inhibitors.  相似文献   

13.
The dengue virus (DENV) non-structural protein 5 (NS5) comprises an N-terminal methyltransferase and a C-terminal RNA-dependent RNA polymerase (RdRp) domain. Both enzymatic activities form attractive targets for antiviral development. Available crystal structures of NS5 fragments indicate that residues 263–271 (using the DENV serotype 3 numbering) located between the two globular domains of NS5 could be flexible. We observed that the addition of linker residues to the N-terminal end of the DENV RdRp core domain stabilizes DENV1–4 proteins and improves their de novo polymerase initiation activities by enhancing the turnover of the RNA and NTP substrates. Mutation studies of linker residues also indicate their importance for viral replication. We report the structure at 2.6-Å resolution of an RdRp fragment from DENV3 spanning residues 265–900 that has enhanced catalytic properties compared with the RdRp fragment (residues 272–900) reported previously. This new orthorhombic crystal form (space group P21212) comprises two polymerases molecules arranged as a dimer around a non-crystallographic dyad. The enzyme adopts a closed “preinitiation” conformation similar to the one that was captured previously in space group C2221 with one molecule per asymmetric unit. The structure reveals that residues 269–271 interact with the RdRp domain and suggests that residues 263–268 of the NS5 protein from DENV3 are the major contributors to the flexibility between its methyltransferase and RdRp domains. Together, these results should inform the screening and development of antiviral inhibitors directed against the DENV RdRp.  相似文献   

14.
丙型肝炎病毒依赖于RNA的RNA聚合酶(RdRp)研究进展   总被引:2,自引:0,他引:2  
由于缺乏合适的HCV感染细胞模型,严重制约了HCV复制,特别是HCV复制的关键因子依赖于RNA的RNA聚合酶(RdRp)的研究.对HCV序列比较分析并通过异源表达证明NS5B是HCV复制的RdRp.NS5B C端疏水性氨基酸区域以及NS5B与细胞膜形成复合体等影响NS5B溶解性.在合适的反应条件下NS5B可以多种RNA分子为模板催化RNA复制,特别是能有效复制HCV全长(+)RNA.高浓度GTP激活HCV RdRp活性.NS5B N/C端缺失突变和保守性A、B、C区中的点突变影响RdRp活性,但D区345位精氨酸突变为赖氨酸时RdRp活性明显升高.HCV RdRp的发现及其功能研究为HCV药物研究提供了新型靶标.  相似文献   

15.
Current assays for the activity of viral RNA-dependent RNA polymerases (RdRps) are inherently end-point measurements, often requiring the use of radiolabeled or chemically modified nucleotides to detect reaction products. In an effort to improve the characterization of polymerases that are essential to the life cycle of RNA viruses and develop antiviral therapies that target these enzymes, a continuous nonradioactive assay was developed to monitor the activity of RdRps by measuring the release of pyrophosphate (PP(i)) generated during nascent strand synthesis. A coupled-enzyme assay method based on the chemiluminescent detection of PP(i), using ATP sulfurylase and firefly luciferase, was adapted to monitor poliovirus 3D polymerase (3D(pol)) and the hepatitis C virus nonstructural protein 5B (NS5B) RdRp reactions. Light production was dependent on RdRp and sensitive to the concentration of oligonucleotide primer directing RNA synthesis. The assay system was found to be amenable to sensitive kinetic studies of RdRps, requiring only 6nM 3D(pol) to obtain a reliable estimate of the initial velocity in as little as 4 min. The assay can immediately accommodate the use of both homopolymer and heteropolymer RNA templates lacking uridylates and can be adapted to RNA templates containing uridine by substituting alpha-thio ATP for ATP. The low background signal produced by other NTPs can be corrected from no enzyme (RdRp) controls. The effect of RdRp/RNA template preincubation was assessed using NS5B and a homopolymer RNA template and a time-dependent increase of RdRp activity was observed. Progress curves for a chain terminator (3(')-deoxyguanosine 5(')-triphosphate) and an allosteric NS5B inhibitor demonstrated the predicted time- and dose-dependent reductions in signal. This assay should facilitate detailed kinetic studies of RdRps and their potential inhibitors using either standard or single-nucleotide approaches.  相似文献   

16.
Recombinant bovine viral diarrhea virus (BVDV) nonstructural protein 5B (NS5B) produced in insect cells has been shown to possess an RNA-dependent RNA polymerase (RdRp) activity. Our initial attempt to produce the full-length BVDV NS5B with a C-terminal hexahistidine tag in Escherichia coli failed due to the expression of insoluble products. Prompted by a recent report that removal of the C-terminal hydrophobic domain significantly improved the solubility of hepatitis C virus (HCV) NS5B, we constructed a similar deletion of 24 amino acids at the C terminus of BVDV NS5B. The resulting fusion protein, NS5BDeltaCT24-His, was purified to homogeneity and demonstrated to direct RNA replication via both primer-dependent (elongative) and primer-independent (de novo) mechanisms. Furthermore, BVDV RdRp was found to utilize a circular single-stranded DNA as a template for RNA synthesis, suggesting that synthesis does not require ends in the template. In addition to the previously described polymerase motifs A, B, C, and D, alignments with other flavivirus sequences revealed two additional motifs, one N-terminal to motif A and one C-terminal to motif D. Extensive alanine substitutions showed that while most mutations had similar effects on both elongative and de novo RNA syntheses, some had selective effects. Finally, deletions of up to 90 amino acids from the N terminus did not significantly affect RdRp activities, whereas deletions of more than 24 amino acids at the C terminus resulted in either insoluble products or soluble proteins (DeltaCT179 and DeltaCT218) that lacked RdRp activities.  相似文献   

17.
We have previously determined the crystal structure of a non-structural 5B (NS5B) protein, an RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV). NS5B protein with the hydrophobic C-terminal 21 amino acid residues truncated, designated NS5B(570), shows a typical nucleotide polymerase structure resembling a right-hand shape. In the crystal structure, a C-terminal region between Leu545 and His562 occupies a putative RNA-binding cleft of this polymerase and seems to inhibit the polymerase activity. Varieties of recombinant NS5B proteins (NS5B(552), NS5B(544), NS5B(536) or NS5B(531), with C-terminal 39, 47, 55 or 60 amino acid residues truncated, respectively) were systematically constructed to elucidate effects of the region on the polymerase activity. NS5B(544), NS5B(536) and NS5B(531) showed markedly higher RdRp activities compared to the activities of NS5B(570) or NS5B(552). Furthermore, when the hydrophobic amino acid residues Leu547, Trp550 and Phe551 (LWF) in NS5B(570) and NS5B(552) were changed to alanine, their activities were higher than that of the original NS5B(570). The crystal structures of the various recombinant NS5B proteins were also determined. Structural comparison of the NS5B proteins indicates that the activation was caused by elimination of a unique hydrophobic interaction between the three C-terminal residues and a shallowly concave pocket consisting of thumb and palm domains.  相似文献   

18.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), is believed to form a membrane-associated RNA replication complex together with other nonstructural proteins and as yet unidentified host components. However, the determinants for membrane association of this essential viral enzyme have not been defined. By double label immunofluorescence analyses, NS5B was found in the endoplasmic reticulum (ER) or an ER-like modified compartment both when expressed alone or in the context of the entire HCV polyprotein. The carboxyl-terminal 21 amino acid residues were necessary and sufficient to target NS5B or a heterologous protein to the cytosolic side of the ER membrane. This hydrophobic domain is highly conserved among 269 HCV isolates analyzed and predicted to form a transmembrane alpha-helix. Association of NS5B with the ER membrane occurred by a posttranslational mechanism that was ATP-independent. These features define the HCV RdRp as a new member of the tail-anchored protein family, a class of integral membrane proteins that are membrane-targeted posttranslationally via a carboxyl-terminal insertion sequence. Formation of the HCV replication complex, therefore, involves specific determinants for membrane association that represent potential targets for antiviral intervention.  相似文献   

19.
Vo NV  Tuler JR  Lai MM 《Biochemistry》2004,43(32):10579-10591
The nonstructural protein NS5B of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp), which plays a central role in viral replication. Most of the reported studies on HCV polymerase in vitro have used a truncated form of the enzyme lacking the C-terminal 21 amino acids (DeltaC(21)-NS5B). In this study, we compared the enzymatic properties of the full-length NS5B (FL-NS5B) and this truncated form. Removal of the C(21) domain enhanced the enzyme stability. Both enzymes are capable of performing de novo and primer-dependent RNA syntheses, but each possesses a unique set of biochemical requirements for optimal RdRp activity. Whereas RNA synthesis by FL-NS5B remained relatively constant at 12-100 mM KCl, synthesis by DeltaC(21)-NS5B rapidly decreased at KCl concentrations greater than 12 mM. The different salt requirement for overall RNA synthesis by these two polymerases can in part be explained by the effect of monovalent ion concentration at the step of template binding, where binding by DeltaC(21)-NS5B but not FL-NS5B decreased proportionally as the KCl concentration increased from 25 to 200 mM. Thus, the C(21) domain appears to contribute to NS5B-RNA template binding, probably through the hydrophobic stacking interaction between its aromatic amino acids and the nucleotide bases of the RNA. This interpretation was supported by the observation that the C(21) polypeptide by itself could also bind to RNA to form binary complexes that were resistant to changes in the KCl concentration. Though both enzymes exhibited similar K(s) values for each of the four NTPs (1-5 microM), DeltaC(21)-NS5B generally required lower NTP concentrations than FL-NS5B for optimal synthesis. Interestingly, DeltaC(21)-NS5B became severely inhibited at elevated NTP concentrations, which most likely is due to competitive binding of the noncomplementary nucleotide to the polymerase catalytic center. Finally, the terminal transferase activity of DeltaC(21)-NS5B was found to be distinct from that of FL-NS5B on several different RNA templates. Together, these findings indicated that the HCV NS5B C(21) domain, in addition to being a membrane anchor, functions in template binding, NTP substrate selection, and modulation of terminal transferase activity.  相似文献   

20.
The plasmid pET-21d-2c-5BDelta55 effectively expressing a C-terminally truncated form (NS5BDelta55) of the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) was constructed. It was derived from pET-21d-5BDelta55 plasmid and contained six mutations in the ATG-start codon region and an additional cistron upstream the target gene. The C-terminally His-tagged NS5BDelta55 protein was expressed in Rosetta(DE3) Escherichia coli strain bearing an additional pRARE plasmid encoding extra copies of rare tRNAs. The yield of the target enzyme exceeded by a factor of 29 the yield of NS5BDelta55 protein expressed from the parental pET-21d-5BDelta55 plasmid (5 mg/L). The increase in the protein yield could be explained by facilitated protein translation initiation, resulted from disruption of the stable secondary mRNA structure. The pET-21d-2c-5BDelta55 plasmid yielded one third amount of the protein when expressed in BL-21(DE3) strain, indicating that the pRARE plasmid is required for a high-level expression of NS5BDelta55 protein. The 29-fold enhancement of the protein yield was accompanied by only a 2.5-fold increase of the corresponding mRNA level. The expression of another HCV NS5A protein His-tagged at the C-terminus in the developed system yielded a similar amount of the protein (4 mg/L), whereas its N-terminally His-tagged counterpart was obtained in a 30 mg/L yield. The NS5A protein purified under denaturing conditions and renatured in solution inhibited the HCV RdRp and was a substrate for human casein kinase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号