首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After oral administration of an organic germanium compound, Ge-132 (300 mg/kg), a significant level of interferon (IFN) activity was detected in the sera of mice at 20 hr and it reached a maximum of 320 U/ml at 24 hr. This IFN activity was lost after heat- or acid-treatment, suggesting that the induced IFN is of gamma-nature. The molecular weight of this IFN was estimated to be 50,000 daltons by gel filtration. The NK activity of spleen cells was increased 24 hr after the oral administration of Ge-132, and cytotoxic macrophages were induced in the peritoneal cavity by 48 hr. In the mice receiving an intraperitoneal (ip) injection of trypan blue or carrageenan 2 days before oral administration of Ge-132, neither induction of IFN nor augmentation of NK activity occurred, and X-ray irradiation of mice also rendered the mice incapable of producing IFN, all indicating that both macrophages and lymphocytes are required for this IFN induction. Both NK and cytotoxic macrophages appeared 18 hr after ip administration of the induced IFN with a titer as low as 20 U/ml. These facts suggest that both the augmentation of NK activity and activation of macrophages in mice after oral administration of Ge-132 are mediated by the induced IFN.  相似文献   

2.
In this study, we examined the activity of recombinant interferon (IFN)-gamma against Plasmodium berghei exoerythrocytic forms (EEF) grown in vitro within the highly differentiated human hepatoma cell line HEPG2. We assayed the effect of IFN-gamma on parasite growth by DNA hybridization using a P. berghei specific DNA probe. The specific activity of IFN-gamma against EEF is very high, and depends upon the time of lymphokine addition. When IFN-gamma is added to HEPG2 cells containing intracellular EEF, 6 hr after sporozoite invasion, parasite DNA replication is inhibited by approximately 75% at 10(3) U/ml and 50% at 1 U/ml. This treatment can either abolish or greatly reduce the infectivity of EEF for mice. When added earlier, 3 hr after completion of sporozoite invasion, IFN-gamma inhibits parasite replication to an even greater degree. The highest levels of inhibition were obtained when IFN-gamma was added 6 hr prior to sporozoite invasion (100% inhibition at 10(2) U/ml, approximately 55% inhibition at 0.1 U/ml, and 17% inhibition at 0.001 U/ml). We found that HEPG2 cells express approximately 44,000 surface receptors for IFN-gamma. These data are consistent with the view that IFN-gamma exerts its antimalarial activity by binding to surface receptors on hepatocytes and inducing intracellular changes unfavorable for parasite development. Tryptophan starvation does not appear to be involved in this process. These findings also support the idea that IFN-gamma, released from immune T cells upon encountering sporozoite antigen, may be an important effector mechanism in sterile immunity to sporozoite challenge.  相似文献   

3.
We examined a potential role of gammadelta T cells in protective immunity to blood-stage Plasmodium berghei XAT infection. Plasmodium berghei XAT is an attenuated variant of the lethal strain P. berghei NK65 and its infection is self-resolving in immune competent mice. To determine whether gammadelta T cells are essential for the resolution of P. berghei XAT malaria, mice were depleted of gammadelta T cells with anti-TCRgammadelta antibody treatment. Although mice that had received control antibody resolved infections, mice received anti-TCRgammadelta antibody could not control their infections and eventually died. Spleen cells from infected mice produced IFN-gamma and nitric oxide (NO) within the first week of infection, however, levels of IFN-gamma and NO in gammadelta T cell-depleted mice were significantly lower than in control mice. To examine whether gammadelta T cells are involved in the antibody production, malarial-specific antibodies of the various isotypes were measured in the sera of gammadelta T cell-depleted mice and control mice. Serum levels of IgG2a, which was known to be a protective antibody in P. berghei XAT malaria, were significantly lower in gammadelta T cell-depleted mice than in control mice, whereas levels of IgG1 were comparable to those in control mice. Our results indicated that the presence of the gammadelta T cell subset was essential for resolution of blood-stage P. berghei XAT malaria and played a modulatory role in the development of Th1 response and host defense against this malarial parasites.  相似文献   

4.
Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM)) CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected na?ve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM) cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2)?=?0.60, p<0.0001). The reducing IFNγ response by hepatic memory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.  相似文献   

5.
Plasmodium berghei XAT is an irradiation-induced attenuated variant derived from the lethal strain P. berghei NK65, and its blood-stage parasites are spontaneously cleared in immune competent mice. In the present study, we studied the mechanism of host resistance to blood-stage malaria infection using P. berghei XAT. Infection enhanced Ab-dependent phagocytosis of PRBC by splenic macrophages in wild-type C57BL/6 mice. In contrast, FcR gamma-chain knockout (FcRgamma(-/-)) mice, which lack the ability to mediate Ab-dependent phagocytosis and Ab-dependent cell-mediated cytotoxicity through FcgammaRI, FcgammaRII, and FcgammaRIII, could not induce Ab-dependent phagocytic activity. These FcRgamma(-/-) mice showed increased susceptibility to the P. berghei XAT infection, with eventually fatal results, although they produced comparable amounts of IFN-gamma by spleen cells and anti-XAT Abs in serum. In addition, passive transfer of anti-XAT IgG obtained from wild-type mice that had recovered from infection into FcRgamma(-/-) mice could not suppress the increase in parasitemia, and almost all of these mice died after marked parasitemia. In contrast, passive transfer of anti-XAT IgG into control wild-type mice inhibited the increase in parasitemia. IFN-gamma(-/-) mice, which were highly susceptible to the P. berghei XAT infection, failed to induce Ab-dependent phagocytic activity and also showed reduced production of serum anti-XAT IgG2a isotype compared with control wild-type mice. These results suggest that FcR-mediated Ab-dependent phagocytosis, which is located downstream of IFN-gamma production, is important as an effector mechanism to eliminate PRBC in blood-stage P. berghei XAT infection.  相似文献   

6.
In support of a postulated role of the Cu++-dependent enzyme, superoxide dismutase (SOD), in antiviral effects of interferon (IFN), a close correspondence was previously shown to exist between inactivation of cellular SOD and concomitant blockade of IFN antiviral activity in fibroblasts by the Cu++-chelating agent, diethyldithiocarbamate (DDC). To further define the extent of "anti-IFN" activity, we initiated studies of DDC effects on IFN stimulation in the NK cell system. Unexpectedly, DDC directly inhibited cytotoxicity mediated by unstimulated NK cells. Pronounced inactivation occurred rapidly (less than 30 min), but was spontaneously reversible in the absence of DDC. Neither cell viability nor lymphocyte binding to target cells was detectably affected. Preincubation of DDC with Cu++ or Zn++ failed to neutralize its inhibitory effects nor could function be restored in DDC-pretreated NK cells by subsequent addition of Cu++, Zn++, Mg++, or Ca++. DDC treatment that inactivated NK cells did not detectably alter lymphocyte SOD activity. Thus, inhibition was probably not attributable to chelating properties of DDC. N-ethyl maleimide (NEM) and para-( hydroxymercuri ) benzoic acid ( PMBA ), enzyme inhibitors that preferentially react with sulfhydryl groups, both inactivated NK cells in a time- and dose-dependent manner similar to that of DDC. Preincubation with the sulfhydryl compound, cysteine, neutralized in parallel fashion the capacity of NEM, PMBA , and DDC to inhibit NK cell activity. Thus, a previously unreported reactivity of DDC with sulfhydryl groups appeared to be the basis of inhibition. NK cells incubated 1 hr with IFN and subsequently cultured 17 to 23 hr without IFN were activated to an extent comparable to cells continuously incubated 18 to 24 hr with IFN. Exposure to IFN for 1 hr was therefore sufficient to commit NK cells to acquisition of a fully activated state. Whether preactivated by a 1-hr or 18- to 24-hr IFN treatment, activated NK cells retained the DDC-sensitive phenotype characteristic of fresh unstimulated NK cells. Thus, prolonged IFN treatment did not render NK cells resistant to DDC or preferentially activate a DDC-sensitive NK cell subset. An 18- to 24-hr incubation of DDC-pretreated cells in the continual presence of IFN resulted in the boosting of NK cell activity. However, the 1-hr IFN pulse treatment protocol was consistently ineffective in boosting when IFN was added just after DDC-pretreatment. These results strongly suggested that DDC temporarily rendered NK cells unresponsive to what, under normal circumstances, approximated an optimally potentiating IFN stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The relative roles of interferon (IFN) and natural killer (NK) cells in herpes simplex virus type 1 (HSV-1) infection of mice were examined. Adoptive transfer of adult mouse leukocytes into 4- to 6-day-old suckling mice protected the recipients from HSV-1 infection, as judged by viral titers in the spleen 2 days postinfection. Protection was mediated by several classes of leukocytes, including those depleted of NK cell activity by antibody to asialo GM1 and those depleted of macrophages by size separation. Mice receiving these leukocytes produced significantly higher levels of IFN 6 hr postinfection (early IFN) than did HSV-1-infected mice not receiving donor leukocytes. Antibody to IFN, under conditions that blocked early but not late IFN synthesis, greatly enhanced HSV-1 synthesis in mice receiving leukocytes and completely removed the protective effect mediated by leukocytes. High doses of anti-asialo GM1 blocked both NK cell activity and early IFN production and resulted in high titers of HSV-1. This effect on virus synthesis was not seen if mice were given antibody 1 day postinfection. Lower doses of anti-asialo GM1, which still depleted NK cell activity but had no effect on early IFN production, did not enhance HSV-1 synthesis. Depletion of NK cell activity with a low dose of antibody had no effect on the reduced HSV-1 synthesis resulting from prophylactic IFN treatment or on the enhanced HSV-1 synthesis resulting from antibody to IFN treatment. Thus, resistance to acute HSV-1 infection in mice correlates with early IFN production but not with NK cell activity, suggesting that NK cells are not major mediators of natural resistance in this model and that the antiviral effect of IFN is not mediated by NK cells.  相似文献   

8.
Inoculation of Ehrlich ascites carcinoma cells (EAC) into the peritoneal cavities of outbred ddY mice induced interferon (IFN) in the circulation. The maximum titer (1,280 U) was obtained at 24 hr after inoculation. This induced IFN had the characteristics of type I IFN, i.e., stability at pH2 and lability at 56 C. An increase in natural killer cell (NK) activity was also observed for the first 3 days after inoculation. In addition, plasma lactate dehydrogenase (LDH) activity was elevated in these mice. Inoculation of ascitic fluid or serum of EAC-bearing mice into normal mice increased plasma LDH activity six- to sevenfold over normal levels and elevated activities persisted throughout the life of the mice. These results suggest that the LDH-elevating agent was responsible for IFN induction and for enhancing NK activity. Because lactate dehydrogenase-elevating virus (LDV) can be eliminated from tumor cells by passage in vitro, we attempted to grow EAC in tissue culture for several months and re-examined whether the inoculation of such cells could elevate plasma LDH activity induce IFN and enhance NK activity. The results showed that inoculation of the passaged cells had no effect on these activities in normal mice. Therefore, we concluded that the IFN inducer was LDV which contaminated the EAC and then enhanced the NK activity. N-tropic murine leukemia virus also contaminated EAC, but this virus was not responsible because cultured cells of EAC still shed this virus.  相似文献   

9.
Human natural killer (NK) cells show high cytotoxic activity against target cells infected with herpes simplex virus type 1 (HSV-1). Substantial amounts of interferon (IFN) were generated in co-cultures of NK effector cells and infected target cells; however, the cytotoxic activity seen against a specific infected cell target did not correlate with the amount of IFN induced. The production of IFN increased steadily from 4 to 18 hr of co-culture, as did NK activity; however, IFN production peaked 4 hr later than NK activity. Pretreatment of NK effector cells with exogenous IFN increased cytotoxic activity against all targets tested, but the differential pattern of reactivity against cells infected with wild type and mutant viruses was unaltered. When effector cells were treated with the RNA synthesis inhibitor actinomycin D before co-culture with virus-infected targets, IFN production was markedly reduced, without a concomitant reduction in cytotoxicity. Similarly, the addition of anti-IFN antiserum to co-cultures greatly decreased the available IFN present, but had no effect on NK activity. We conclude that the induction of cytotoxic activity in co-cultures of NK effector cells and HSV-1-infected target cells is independent of the induction of IFN.  相似文献   

10.
The repeated ip injection of highly purified recombinant IFN-gamma or IL-2 resulted in a local increase in peritoneal NK activity. This increase in lytic activity was paralleled by increases in the number of peritoneal leukocytes reacting with a rat monoclonal antibody directed against the NK cell-associated surface antigen LGL-1. LGL-1 reacts specifically with the majority of murine NK cells in BALB/c and C57BL/6 mice. A single injection of IFN-gamma induced more peritoneal NK activity at 24 hr than IL-2 on a protein basis. Both cytokines induced increases in the number of LGL-1+ peritoneal cells by 24 hr after injection. Simultaneous injection of suboptimal amounts of IFN-gamma (100 U) and IL-2 (10,000 U) resulted in a significant augmentation of peritoneal NK activity over that observed with either cytokine alone. Also, the peritoneal NK activity generated in response to ip injection of high doses of IL-2 (100,000 U) could be dramatically reduced by simultaneous injection of a neutralizing monoclonal antibody to IFN-gamma. Administration of IFN-gamma 1 day prior to IL-2 resulted in a significant augmentation of the NK activity above that observed with the individual cytokines. In contrast, injection of IL-2 prior to IFN-gamma did not enhance NK activity over that observed with the individual cytokines. Both cytokines must be injected ip for the complementary effects of IFN-gamma and IL-2 on peritoneal NK activity to occur. In contrast, in vitro incubation of peritoneal leukocytes with IFN-gamma resulted in neither a significant enhancement of NK lytic activity nor an increase in the number of LGL-1+ cells. In vitro treatment of peritoneal leukocytes with IL-2 always resulted in significant augmentation of NK lytic activity in the absence of any increase in the number of LGL-1+ cells. These data are consistent with the hypothesis that the local release of IFN-gamma increases peritoneal NK activity by promoting the influx of blood-borne LGL-1+ NK cells from other sites. In contrast, low doses of IL-2 augment the lytic activity of local resident NK cells, whereas high doses of this cytokine induce both an activation of local NK cells and emigration of LGL-1+ NK cells from other sites due to the endogenous generation of IFN-gamma within the peritoneal cavity. Therefore, the local release of IFN-gamma may play an important role in regulating NK cell infiltration in vivo.  相似文献   

11.
The regulatory role of interferon (IFN) on the growth of mouse natural killer (NK) cells in the presence of interleukin 2 (IL 2) was analyzed by the limiting dilution assay. Pretreatment for 5 hr with IFN (600 U/ml) was able to augment the frequency of proliferating cells and NK effector cells when spleen cells of BALB/c nu/+ and BALB/c nu/nu were cultured for 7 days in the presence of IL 2. When IFN was present during the 7-day culture period, we again found an increase in proliferative and cytotoxic frequencies in cultures of spleen cells from nude mice, but in contrast, found a decrease in these frequencies in cultures of spleen cells from euthymic mice. Addition of irradiated (3000 R) spleen or thymus feeder cells from euthymic mice to the nu/nu cultures caused an inhibitory activity of IFN also on nu/nu cells. These data indicate that IFN can have both positive and negative regulatory effects on the in vitro growth and differentiation of mouse NK cells and that the inhibitory effects are mediated via T lymphocytes.  相似文献   

12.
An IgM monoclonal antibody (Mab 36) which reacts with the circumsporozoite (CS) proteins of both P. falciparum and P. berghei was isolated from Plasmodium falciparum sporozoite-immunized mice. In assays of biological activity, Mab 36 induces the CS precipitation reaction with live sporozoites and blocks the invasion of hepatoma cells by sporozoites in vitro at concentrations much lower than those observed for previously reported CS protein-specific monoclonal antibodies. Mab 36 also provided complete protection against P. berghei sporozoite challenge in mice at low doses. Linear epitope mapping revealed that the epitope specificities recognized by Mab 36 are completely encompassed by other monoclonals previously shown to be associated in vivo with protection against P. falciparum or P. berghei sporozoite infection. These results suggest that the ability to make high-affinity IgM antibody to specific CS protein repeat epitopes may be important for eliciting protection against malarial infection.  相似文献   

13.
HeLa cells show a decrease of susceptibility to the killing by natural killer (NK) cells when treated with IFN-alpha, beta, or gamma. The concentrations at which preparations of IFN-alpha or beta induce the resistance to killing are those which also induce resistance of HeLa cells to infection by vesicular stomatitis virus (VSV). Stimulation of the killing activity of NK cells is also induced at that same range of concentrations of IFN-alpha and beta. In contrast with preparations of IFN-gamma, induction of the resistance to killing occurs at IFN concentrations which have only marginal stimulatory effect on the activity of NK cells and have no antiviral effect against VSV. IFN-gamma, produced with cloned IFN-gamma cDNA, is as effective as lymphocyte-produced IFN in inducing the resistance to natural killing. The potent effect of IFN-gamma on the target cells is, therefore, not due to the function of lymphokines which might contaminate lymphocyte-produced preparations of IFN-gamma, but a genuine property of the IFN itself.  相似文献   

14.
The effect of treating cultured Madin-Darby bovine kidney cells (MDBK) with recombinant bovine interferon-alpha 1 (IFN-alpha 1) or recombinant bovine interferon-gamma (IFN-gamma) on the intracellular development of Eimeria tenella was studied. Treatment of the MDBK cells with IFN alpha-1 for 24 hr before infection and for 48 hr after infection had no effect on the development of E. tenella. However, following the same treatment regime with serial dilutions of IFN-gamma induced a significant reduction in the number of total intracellular parasites (sporozoites, trophozoites, and meronts) compared to the untreated controls. Of these intracellular parasites, less than 30% had developed beyond the sporozoite stage. These results are suggestive of a role for IFN-gamma in protecting or limiting the development of E. tenella in their host cells. These results could be relevant to the control of these organisms and may be exploited for use with a coccidiosis vaccine.  相似文献   

15.
CD8+ T cells have been implicated as critical effector cells in protection against preerythrocytic stage malaria, including the potent protective immunity of mice and humans induced by immunization with radiation-attenuated Plasmodium spp. sporozoites. This immunity is directed against the Plasmodium spp. parasite developing within the host hepatocyte and for a number of years has been presumed to be mediated directly by CD8+ CTL or indirectly by IFN-gamma released from CD8+ T cells. In this paper, in BALB/c mice, we establish that after immunization with irradiated sporozoites or DNA vaccines parasite-specific CD8+ T cells trigger a novel mechanism of adaptive immunity that is dependent on T cell- and non-T cell-derived cytokines, in particular IFN-gamma and IL-12, and requires NK cells but not CD4+ T cells. The absolute requirement for CD8+ T cells to initiate such an effector mechanism, and the requirement for IL-12 and NK cells in such vaccine-induced protective immunity, are unique and underscore the complexity of the immune responses that protect against malaria and other intracellular pathogens.  相似文献   

16.
Activation of human natural killer (NK) cells in vitro with interferon (IFN) and poly I:C results in a partial loss of sensitivity of these cells to suppression by PGE2. The acquired resistance to suppression can be induced with the large granular lymphocytes (LGL) in the absence of monocytes. With K562, HSB, and CEM used as NK target cells, the IFN-induced resistance to suppression by PGE2 is observed with all three target cells. Furthermore, ADCC activity of IFN-activated cells against tumor (SB-TNP) and erythroid (CRC-TNP) target cells is also less susceptible to suppression by PGE2. The dual effect of IFN on NK cells is prompt; the augmentation of NK activity and the acquired resistance to suppression by PGE2 can be seen after 3 hr of treatment with IFN. Both of these characteristics seem to be quite stable for at least 24 hr. Spleen cells from mice (CBA, C3H, and BALB/c nude) treated in vivo with poly I:C also acquire partial resistance to suppression by PGE2. Our data therefore suggest that IFN-stimulated NK cells are protected from suppression by PGE2. Biologically, the IFN-induced protective effect may be beneficial to host resistance to neoplasia.  相似文献   

17.
SYNOPSIS. Sporozoites of rodent malaria, Plasmodium berghei , and simian malaria, Plasmodium knowlesi and Plasmodium cynomolgi , were partially separated from mosquito debris and microbial contaminants by passage of Anopheles material through a DEAE-cellulcse column. In addition to eliminating most of the contaminants (80–90%), this simple technic has made it possible to recover rapidly large numbers of viable sporozoites (55–75% yield), which have retained their infectivity, immunogenicity, and capacity to react with known antisera. Mice injected with varying doses of column-purified sporozoites (CS) of P. berghei produced infections which paralleled those seen in the controls. Total protection against challenge with a potentially lethal dose of viable sporozoites was acquired by mice inoculated twice with irradiated CS of P. berghei. CS of P. berghei and P. cynomolgi gave positive circumsporozoite precipitation (CSP) reactions, upon inoculation with the respective immune sera. The preservation of the surface antigens of CS was documented by immunofluorescence.
It was shown that differences in elution behavior exist among sporozoites of certain species of Plasmodium as well as among sporozoites of the same species derived from different organs of the mosquito. These results may be attributed to differences in the surface charge of the sporozoites or conditions in sample media.
Purified sporozoites obtained by the method described in this report provide an adequate source of parasites for a variety of in vitro studies.  相似文献   

18.
We previously demonstrated that protection induced by radiation-attenuated (gamma) Plasmodium berghei sporozoites is linked to MHC class I-restricted CD8(+) T cells specific for exoerythrocytic-stage Ags, and that activated intrahepatic memory CD8(+) T cells are associated with protracted protection. In this study, we further investigated intrahepatic memory CD8(+) T cells to elucidate mechanisms required for their maintenance. Using phenotypic markers indicative of activation (CD44, CD45RB), migration (CD62L), and IFN-gamma production, we identified two subsets of intrahepatic memory CD8(+) T cells: the CD44(high)CD45RB(low)CD62L(low)CD122(low) phenotype, representing the dominant effector memory set, and the CD44(high)CD45RB(high)CD62L(low/high)CD122(high) phenotype, representing the central memory set. Only the effector memory CD8(+) T cells responded swiftly to sporozoite challenge by producing sustained IFN-gamma; the central memory T cells responded with delay, and the IFN-gamma reactivity was short-lived. In addition, the subsets of liver memory CD8(+) T cells segregated according to the expression of CD122 (IL-15R) in that only the central memory CD8(+) T cells were CD122(high), whereas the effector memory CD8(+) T cells were CD122(low). Moreover, the effector memory CD8(+) T cells declined as protection waned in mice treated with primaquine, a drug that interferes with the formation of liver-stage Ags. We propose that protracted protection induced by P. berghei radiation-attenuated sporozoites depends in part on a network of interactive liver memory CD8(+) T cell subsets, each representing a different phase of activation or differentiation, and the balance of which is profoundly affected by the repository of liver-stage Ag and IL-15.  相似文献   

19.
It is known that IL-2 induces lymphocytes to produce interferon-gamma (IFN-gamma) and this IFN type is particularly efficient in inducing tumor cell resistance to natural killer (NK) cell-mediated lysis. We have investigated the effect of IFN on tumor cell sensitivity to LAK cell-mediated cytotoxicity. Pretreatment of the human K562 leukemia and HHMS melanoma with IFN-gamma and the Daudi lymphoma with IFN-alpha caused a significant reduction in sensitivity to lysis by human LAK cells generated in vitro in the presence of human recombinant IL-2 (100 U/ml). The LAK activity was mediated by cells expressing NK cell markers (CD16,NKH1) as well as by cells with T cell markers (CD3, CD5). IFN-treated K562 cells were protected from lysis mediated by all these populations. Supernatants from LAK cultures containing IFN-gamma were able to induce NK and LAK resistance when used to pretreat K562 overnight. Antibodies to IFN-gamma but not to IFN-alpha were able to neutralize this activity. Taken together, these results indicate that the production of IFN-gamma by LAK cells may be of importance in induction of tumor cell resistance to LAK cell-mediated lysis.  相似文献   

20.
Sporozoites of rodent malaria, Plasmodium berghei, and simian malaria, Plasmodium knowlesi and Plasmodium cynomolgi, were partially separated from mosquito debris and microbial contaminants by passage of Anopheles material through a DEAE-cellulose column. In addition to eliminating most of the contaminants (80-90%), this simple technic has made it possible to recover rapidly large numbers of viable sporozoites (55-75% yield), which have retained their infectivity, immunogenicity, and capacity to react with known antisera. Mice injected with varying doses of column-purified sporozoites (CS) of P. berghei produced infections which paralleled those seen in the controls. Total protection against challenge with a potentially lethal dose of viable sporozoites was acquired by mice inoculated twice with irradiated CS of P. berghei CS of P. berghei and P. cynomolgi gave positive circumsporozoite precipitation (CSP) reactions, upon inoculation with the respective immune sera. The preservation of the surface antigens of CS was documented by immunofluorescence. It was shown that differences in elution behavior exist among sporozoites of certain species of Plasmodium as well as among sporozoiters of the same species derived from different organs of the mosquito. These results may be attributed to differences in the surface charge of the sporozoites or conditions in sample media. Purified sporozoites obtained by the method described in this report provide an adequate source of parasites for a variety of in vitro studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号