首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vulval development in the nematode Caenorhabditis elegans can be divided into a fate specification phase controlled in part by let-60 Ras, and a fate execution phase involving stereotypical patterns of cell division and migration controlled in part by lin-17 Frizzled. Since the small GTPase Rac has been implicated as a downstream target of both Ras and Frizzled and influences cytoskeletal dynamics, we investigated the role of Rac signaling during each phase of vulval development. We show that the Rac gene ced-10 and the Rac-related gene mig-2 are redundantly required for the proper orientation of certain vulval cell divisions, suggesting a role in spindle positioning. ced-10 Rac and mig-2 are also redundantly required for vulval cell migrations and play a minor role in vulval fate specification. Constitutively active and dominant-negative mutant forms of mig-2 cause vulval defects that are very similar to those seen in ced-10;mig-2 double loss-of-function mutants, indicating that they interfere with the functions of both ced-10 Rac and mig-2. Mutations in unc-73 (a Trio-like guanine nucleotide exchange factor) cause similar vulval defects, suggesting that UNC-73 is an exchange factor for both CED-10 and MIG-2. We discuss the similarities and differences between the cellular defects seen in Rac mutants and let-60 Ras or lin-17 Frizzled mutants.  相似文献   

3.
D. M. Eisenmann  S. K. Kim 《Genetics》1997,146(2):553-565
The Caenorhabditis elegans let-60 gene encodes a Ras protein that mediates induction of the hermaphrodite vulva. To better understand how mutations constitutively activate Ras and cause unregulated cell division, we have characterized ga89, a temperature-sensitive, gain-of-function mutation in let-60 ras. At 25°, ga89 increases let-60 activity resulting in a multivulva phenotype. At 15°, ga89 decreases let-60 activity resulting in a vulvaless phenotype in let-60(ga89)/Df animals. The ga89 mutation causes a leucine (L) to phenylalanine (F) substitution at amino acid 19, a residue conserved in all Ras proteins. We introduced the L19F change into human H-Ras protein and found that the in vitro GTPase activity of H-Ras became temperature-dependent. Genetic experiments suggest that LET-60(L19F) interacts with GAP and GNEF, since mutations that decrease GAP and GNEF activity affect the multivulva phenotype of let-60(ga89) animals. These results suggest that the L19F mutation primarily affects the intrinsic rate of GTP hydrolysis by Ras, and that this effect may be sufficient to account for the activated-Ras phenotype caused by let-60(ga89). Our results suggest that a mutation in a human ras gene analogous to ga89 might contribute to oncogenic transformation.  相似文献   

4.
5.
Nanji M  Hopper NA  Gems D 《Aging cell》2005,4(5):235-245
The DAF-2 insulin/insulin-like growth factor 1 (IGF-1) receptor signals via a phosphatidylinositol 3-kinase (PI3K) pathway to control dauer larva formation and adult longevity in Caenorhabditis elegans. Yet epistasis analysis suggests signal bifurcation downstream of DAF-2. We have used epistasis analysis to test whether the Ras pathway (which plays a role in signaling from mammalian insulin receptors) acts downstream of DAF-2. We find that an activated Ras mutation, let-60(n1046gf), weakly suppresses constitutive dauer diapause in daf-2 and age-1 (PI3K) mutants. Moreover, increased Ras pathway signaling partially suppresses the daf-2 mutant feeding defect, while reduced Ras pathway signaling enhances it. By contrast, activated Ras extends the longevity induced by mutation of daf-2, while reduced Ras pathway signaling partially suppresses it. Thus, Ras pathway signaling appears to act with insulin/IGF-1 signaling during larval development, but against it during aging.  相似文献   

6.
To discover and study intracellular signals that regulate proteolysis in muscle, we have employed transgenic strains of Caenorhabditis elegans that produce a soluble LacZ reporter protein limited to body-wall and vulval muscles. This reporter protein is stable in well-fed wild-type animals, but its degradation is triggered upon a shift to 25 degrees C in a strain carrying a temperature-sensitive activating mutation in the Ras oncogene homologue let-60. These mutants are not physiologically starved, inasmuch as growth rates are normal at 25 degrees C. Ras-induced degradation is not prevented by the presence of cycloheximide added at or before the temperature shift and thus uses preexisting proteolytic systems and signaling components. Furthermore, degradation is triggered when adult animals are shifted to conditions of 25 degrees C, confirming that Ras acutely promotes protein degradation in muscles whose developmental history is normal. Reduction-of-function mutations in the downstream protein kinase Raf (lin-45), MEK (mek-2), or mitogen-activated protein kinase (MAPK) (mpk-1) prevent Ras-induced protein degradation, whereas activated MPK-1 is sufficient to trigger degradation, indicating that this kinase cascade is the principal route by which Ras signaling triggers protein degradation in muscle. This pathway is activated in hypodermal cells by the LET-23 epidermal growth factor receptor homologue, but an activating mutation in let-23 does not promote proteolysis in muscle. Starvation-induced LacZ reporter degradation is unaffected by reduction-of-function mutations in Ras, Raf, MEK, or MAPK, implying that Ras activation and starvation trigger proteolysis by mechanisms that are at least partially independent. This is the first evidence that Ras-Raf-MEK-MAPK signaling activates protein degradation in differentiated muscle.  相似文献   

7.
8.
9.
Hopper NA 《Genetics》2006,173(1):163-175
Previous genetic analysis has shown that dos/soc-1/Gab1 functions positively in receptor tyrosine kinase (RTK)-stimulated Ras/Map kinase signaling through the recruitment of csw/ptp-2/Shp2. Using sensitized assays in Caenorhabditis elegans for let-23/Egfr and daf-2/InsR (insulin receptor-like) signaling, it is shown that soc-1/Gab1 inhibits phospholipase C-gamma (PLCgamma) and phosphatidylinositol 3'-kinase (PI3K)-mediated signaling. Furthermore, as well as stimulating Ras/Map kinase signaling, soc-1/Gab1 stimulates a poorly defined signaling pathway that represses class 2 daf-2 phenotypes. In addition, it is shown that SOC-1 binds the C-terminal SH3 domain of SEM-5. This binding is likely to be functional as the sem-5(n2195)G201R mutation, which disrupts SOC-1 binding, behaves in a qualitatively similar manner to a soc-1 null allele in all assays for let-23/Egfr and daf-2/InsR signaling that were examined. Further genetic analysis suggests that ptp-2/Shp2 mediates the negative function of soc-1/Gab1 in PI3K-mediated signaling, as well as the positive function in Ras/Map kinase signaling. Other effectors of soc-1/Gab1 are likely to inhibit PLCgamma-mediated signaling and stimulate the poorly defined signaling pathway that represses class 2 daf-2 phenotypes. Thus, the recruitment of soc-1/Gab1, and its effectors, into the RTK-signaling complex modifies the cellular response by enhancing Ras/Map kinase signaling while inhibiting PI3K and PLCgamma-mediated signaling.  相似文献   

10.
11.
12.
Vulval induction in Caenorhabditis elegans has helped define an evolutionarily conserved signal transduction pathway from receptor tyrosine kinases (RTKs) through the adaptor protein SEM-5 to RAS. One component present in other organisms, a guanine nucleotide exchange factor for Ras, has been missing in C.ELEGANS: To understand the regulation of this pathway it is crucial to have all positive-acting components in hand. Here we describe the identification, cloning and genetic characterization of C.ELEGANS: SOS-1, a putative guanine nucleotide exchanger for LET-60 RAS. RNA interference experiments suggest that SOS-1 participates in RAS-dependent signaling events downstream of LET-23 EGFR, EGL-15 FGFR and an unknown RTK. We demonstrate that the previously identified let-341 gene encodes SOS-1. Analyzing vulval development in a let-341 null mutant, we find an SOS-1-independent pathway involved in the activation of RAS signaling. This SOS-1-independent signaling is not inhibited by SLI-1/Cbl and is not mediated by PTP-2/SHP, raising the possibility that there could be another RasGEF.  相似文献   

13.
14.
Lung cancer is the leading cause of cancer-related deaths worldwide. Lack of early detection and limited options for targeted therapies are both contributing factors to the dismal statistics observed in lung cancer. Thus, advances in both of these areas are likely to lead to improved outcomes. MicroRNAs (miRs or miRNAs) represent a class of non-coding RNAs that have the capacity for gene regulation and may serve as both diagnostic and prognostic biomarkers in lung cancer. Abnormal expression patterns for several miRNAs have been identified in lung cancers. Specifically, let-7 and miR-9 are deregulated in both lung cancers and other solid malignancies. In this paper, we construct a mathematical model that integrates let-7 and miR-9 expression into a signaling pathway to generate an in silico model for the process of epithelial mesenchymal transition (EMT). Simulations of the model demonstrate that EGFR and Ras mutations in non-small cell lung cancers (NSCLC), which lead to the process of EMT, result in miR-9 upregulation and let-7 suppression, and this process is somewhat robust against random input into miR-9 and more strongly robust against random input into let-7. We elected to validate our model in vitro by testing the effects of EGFR inhibition on downstream MYC, miR-9 and let-7a expression. Interestingly, in an EGFR mutated lung cancer cell line, treatment with an EGFR inhibitor (Gefitinib) resulted in a concentration specific reduction in c-MYC and miR-9 expression while not changing let-7a expression. Our mathematical model explains the signaling link among EGFR, MYC, and miR-9, but not let-7. However, very little is presently known about factors that regulate let-7. It is quite possible that when such regulating factors become known and integrated into our model, they will further support our mathematical model.  相似文献   

15.
16.
The let-60 ras gene acts in a signal transduction pathway to control vulval differentiation in Caenorhabditis elegans. By screening suppressors of a dominant negative let-60 ras allele, we isolated three loss-of-function mutations in the sur-5 gene which appear to act as negative regulators of let-60 ras during vulval induction. sur-5 mutations do not cause an obvious mutant phenotype of their own, and they appear to specifically suppress only one of the two groups of let-60 ras dominant negative mutations, suggesting that the gene may be involved in a specific aspect of Ras activation. Consistent with its negative function, overexpressing sur-5 from an extragenic array partially suppresses the Multivulva phenotype of an activated let-60 ras mutation and causes synergistic phenotypes with a lin-45 raf mutation. We have cloned sur-5 and shown that it encodes a novel protein. We have also identified a potential mammalian SUR-5 homolog that is about 35% identical to the worm protein. SUR-5 also has some sequence similarity to acetyl coenzyme A synthetases and is predicted to contain ATP/GTP and AMP binding sites. Our results suggest that sur-5 gene function may be conserved through evolution.  相似文献   

17.
M Han  P W Sternberg 《Cell》1990,63(5):921-931
Genetic analysis previously suggested that the let-60 gene controls the switch between vulval and hypodermal cell fates during C. elegans vulval induction. We have cloned the let-60 gene, and shown that it encodes a gene product identical in 84% of its first 164 amino acids to ras gene products from other vertebrate and invertebrate species. This conservation suggests that the let-60 product contains all the biochemical functions of ras proteins. Extrachromosomal arrays of let-60 ras DNA cause cell-type misspecification (extra vulval fates) phenotypically opposite to that caused by let-60 ras loss-of-function mutations (no vulval fates), and suppress the vulvaless phenotype of mutations in two other genes necessary for vulval induction. Thus, the level and pattern of let-60 ras expression may be under strict regulation; increase in let-60 ras activity bypasses or reduces the need for upstream genes in the vulval induction pathway.  相似文献   

18.
The lin-12/Notch signaling pathway is conserved from worms to humans and is a master regulator of metazoan development. Here, we demonstrate that lin-12/Notch gain-of-function (gf) animals display precocious alae at the L4 larval stage with a significant increase in let-7 expression levels. Furthermore, lin-12(gf) animals display a precocious and higher level of let-7 gfp transgene expression in seam cells at L3 stage. Interestingly, lin-12(gf) mutant rescued the lethal phenotype of let-7 mutants similar to other known heterochronic mutants. We propose that lin-12/Notch signaling pathway functions in late developmental timing, upstream of or in parallel to the let-7 heterochronic pathway. Importantly, the human microRNA let-7a was also upregulated in various human cell lines in response to Notch1 activation, suggesting an evolutionarily conserved cross-talk between let-7 and the canonical lin-12/Notch signaling pathway.  相似文献   

19.
RAS is regulated by the let-7 microRNA family   总被引:131,自引:0,他引:131  
MicroRNAs (miRNAs) are regulatory RNAs found in multicellular eukaryotes, including humans, where they are implicated in cancer. The let-7 miRNA times seam cell terminal differentiation in C. elegans. Here we show that the let-7 family negatively regulates let-60/RAS. Loss of let-60/RAS suppresses let-7, and the let-60/RAS 3'UTR contains multiple let-7 complementary sites (LCSs), restricting reporter gene expression in a let-7-dependent manner. mir-84, a let-7 family member, is largely absent in vulval precursor cell P6.p at the time that let-60/RAS specifies the 1 degrees vulval fate in that cell, and mir-84 overexpression suppresses the multivulva phenotype of activating let-60/RAS mutations. The 3'UTRs of the human RAS genes contain multiple LCSs, allowing let-7 to regulate RAS expression. let-7 expression is lower in lung tumors than in normal lung tissue, while RAS protein is significantly higher in lung tumors, providing a possible mechanism for let-7 in cancer.  相似文献   

20.
Experiments with mammalian tissue culture cells have implicated the small GTPase Ras in the control of cellular proliferation. Evidence is presented here that this is not the case for a living animal, the nematode Caenorhabditis elegans: proliferation late in embryogenesis and throughout the four larval stages is not noticeably affected in animals lacking Ras in various parts of their cell lineages. Instead, genetic mosaic analysis of the let-60 gene suggests that Ras is required only, at least later in development (a maternal effect cannot be excluded), for establishment of a few temporally and spatially distinct cell fates. Only one of these, the duct cell fate, appears to be essential for viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号