首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand-binding studies with labelled triethyltin on yeast mitochondrial membranes showed the presence of high-affinity sites (KD = 0.6 micronM; 1.2 +/- 0.3 nmol/mg of protein) and low-affinity sites (KD less than 45 micronM; 70 +/- 20 nmol/mg of protein). The dissociation constant of the high-affinity site is in good agreement with the concentration of triethyltin required for inhibition of mitochondrial ATPase (adenosine triphosphatase) and oxidative phosphorylation. The high-affinity site is not competed for by oligomycin or venturicidin, indicating that triethyltin reacts at a different site from these inhibitors of oxidative phosphorylation. Fractionation of the mitochondrial membrane shows a specific association of the high-affinity sites with the ATP synthase complex. During purification of ATP synthase (oligomycin-sensitive ATPase) there is a 5-6-fold purification of oligomycin- and triethyltin-sensitive ATPase activity concomitant with a 7-9-fold increase in high-affinity triethyltin-binding sites. The purified yeast oligomycin-sensitive ATPase complex contains approximately six binding sites for triethyltin/mol of enzyme complex. It is concluded that specific triethyltin-binding sites are components of the ATP synthase complex, which accounts for the specific inhibition of ATPase and oxidative phosphorylation by triethyltin.  相似文献   

2.
We have previously demonstrated that the heparin-binding lectin of human placenta dissociates into up to four distinct polypeptides with molecular weights of 14,400, 15,000, 16,200, and 16,700 (Kohnke-Godt, B., & Gabius, H.-J. (1989) Biochemistry 28, 6531-6538). Stable complexes to ligands can shift the molecular weight appearance of the lectin to higher values. They can be dissociated in the additional presence of 9 M urea or by enzymatic degradation of heparin in model studies. The binding of heparin is rather stable over a range of salt concentrations from 1 to 3 M NaCl. Chemical modification with group-specific reagents to arginine, lysine, histidine, tyrosine, and tryptophan results in substantial inactivation of binding activity. Further amino-terminal sequence analyses point to a high-scoring relationship in this region to histone sequences, namely, histone H2B, but to no published sequences for any heparin-binding growth factor. Calculation of relatedness on the basis of differences in amino acid composition corroborates the conclusion of molecular distinction between the lectin, histones H2A and H2B, and the fibroblast growth factor as well as angiogenin. Histones only weakly agglutinate type II erythrocytes in contrast to the lectin. The immobilized lectin exhibits two classes of binding sites with KD values of 3 and 110 nM in contrast to one estimated KD value of 250 nM with a commercially available histone fraction. Both fractions retain binding activity to biotinylated heparin in transblots and are immunologically cross-reactive to antibodies, raised against the lectin as antigen. Subcellular fractionation clearly demonstrates that heparin-inhibitable hemagglutination activity and immunologically cross-reactive protein bands, characteristic for the lectin, but not unequivocally distinguishable from certain histone fractions in blots, are not confined to the nuclear fraction in the human placenta.  相似文献   

3.
Previous studies had led to the conclusion that the globular, single-headed myosins IA and IB from Acanthamoeba castellanii contain two actin-binding sites: one associated with the catalytic site and whose binding to F-actin activates the Mg2+-ATPase activity and a second site whose binding results in the cross-linking of actin filaments and makes the actin-activated ATPase activity positively cooperative with respect to myosin I concentration. We have now prepared a 100,000-Da NH2-terminal peptide and a 30,000-Da COOH-terminal peptide by alpha-chymotryptic digestion of the myosin IA heavy chain. The intact 17,000-Da light chain remained associated with the 100,000-Da fragment, which also contained the serine residue that must be phosphorylated for expression of actin-activated ATPase activity by native myosin IA. The 30,000-Da peptide, which contained 34% glycine and 21% proline, bound to F-actin with a KD less than 0.5 microM in the presence or absence of ATP but had no ATPase activity. The 100,000-Da peptide bound to F-actin with KD = 0.4-0.8 microM in the presence of 2 mM MgATP and KD less than 0.01 microM in the absence of MgATP. In contrast to native myosin IA, neither peptide cross-linked actin filaments. The phosphorylated 100,000-Da peptide had actin-activated ATPase activity with the same Vmax as that of native phosphorylated myosin IA but this activity displayed simple, noncooperative hyperbolic dependence on the actin concentration in contrast to the complex cooperative kinetics observed with native myosin IA. These results provide direct experimental evidence for the presence of two actin-binding sites on myosin IA, as was suggested by enzyme kinetic and filament cross-linking data, and also for the previously proposed mechanism by which monomeric myosins I could support contractile activities.  相似文献   

4.
1. Mitochondria from Candida utilis CBS 1516 and Sacchromyces cerevisiae JB 65 possess an ATPase-inhibitor activity. The inhibitor activity depends on the growth conditions of the yeast cells. It is markedly decreased when the cells are grown in the presence of a high concentration of glucose, which suggests that glucose represses the synthesis of the ATPase inhibitor or of a protein required for the insertion of the inhibitor into the inner mitochondrial membrane. 2. The ATPase inhibitor has been isolated from D. utilis mitochondria and purified to homogeneity. The minimal molecular weight calculated from amino acid composition is close to 7500. Dtermination of the molecular weight by sokium dodecylsulfate-polyacrylamide gel electrophoresis gives a value close to 6000. 3. The ATPas inhibitor of C. utilis mitochondria differs from the beef heart ATPase inhibitor by a number of properties. It has a lower molecular weight (6000-7500 vs 10500), a different amino acid composition, and a more acidic isoelectric point 5, 6 vs 7, 6). In spite of these differences, the C. utilis inhibitor cross-reacts with the ATPase of beef heart submitochondrial inhibitor-depleted particles. 4. The interaction of the C. utilis inhibitor with the ATPase of inhibitor-depleted particles requires the addition of Mg-2+-ATP or ATP in the incubation medium. 5. 14-C labelling of the C.utilis inhibitor has been achieved by growing C. utilis in a medium supplemented with [14-C]leucine. It has been found by titration experiments that the C. utilis 14-C-labelled inhibitor binds to the homologous submitochondrial inhibitor-depleted particles with a KD of about 10- minus 7 M. The number of binding sites is of the order of 0.1 nmol/mg protein.  相似文献   

5.
FliH regulates the flagellar export ATPase FliI, preventing nonproductive ATP hydrolysis. FliH has been shown to stably associate with the C ring protein FliN. Analysis of this complex reveals that FliH is required for FliI localization to the C ring, and thus FliH not only inhibits FliI ATPase activity but also may act to target FliI to the basal body. Quantitative binding studies revealed a KD of 110 nM for FliH binding to FliN. The KD for FliH binding of a FliN variant from a temperature-sensitive nonflagellate fliN point mutant was determined to be 270 nM, suggesting a molecular explanation for its phenotype. Another variant FliN from a temperature-sensitive mutant with a different phenotype displayed binding with an intermediate affinity. Weak export activity in a fliN null mutant was greatly increased by overproduction of FliI, mimicking a previously observed FliH bypass effect and supporting the conclusion that FliN-FliH binding is important for localization of FliI to the C ring and thus the membrane-embedded export apparatus beyond. A model incorporating the present findings is presented.  相似文献   

6.
The interference of the heparin-neutralizing plasma component S protein (vitronectin) (Mr = 78,000) with heparin-catalyzed inhibition of coagulation factor Xa by antithrombin III was investigated in plasma and in a purified system. In plasma, S protein effectively counteracted the anticoagulant activity of heparin, since factor Xa inhibition was markedly reduced in comparison to heparinized plasma deficient in S protein. Using purified components in the presence of heparin, S protein induced a concentration-dependent reduction of the inhibition rate of factor Xa by antithrombin III. This resulted in a decrease of the apparent pseudo-first order rate constant by more than 10-fold at a physiological ratio of antithrombin III to S protein. S protein not only counteracted the anticoagulant activity of commercial heparin but also of low molecular weight forms of heparin (mean Mr of 4,500). The heparin-neutralizing activity of S protein was found to be mainly expressed in the range 0.2-10 micrograms/ml of high Mr as well as low Mr heparin. S protein and high affinity heparin reacted with apparent 1:1 stoichiometry to form a complex with a dissociation constant KD = 1 X 10(-8) M as determined by a functional assay. As deduced from dot-blot analysis, direct interaction of radiolabeled heparin with S protein revealed a dissociation constant KD = 4 X 10(-8) M. Heparin binding as well as heparin neutralization by S protein increased significantly when reduced/carboxymethylated or guanidine-treated S protein was employed indicating the existence of a partly buried heparin-binding domain in native S protein. Radiolabeled heparin bound to the native protein molecule as well as to a BrCN fragment (Mr = 12,000) containing the heparin-binding domain as demonstrated by direct binding on nitrocellulose replicas of sodium dodecyl sulfate-polyacrylamide gels. Kinetic analysis revealed that the heparin neutralization activity of S protein in the inhibition of factor Xa by antithrombin III could be mimicked by a synthetic tridecapeptide from the amino-terminal portion of the heparin-binding domain. These data provide evidence that the heparin-binding domain of S protein appears to be unique in binding to heparin and thereby neutralizing its anticoagulant activity in the inhibition of coagulation factors by antithrombin III. The induction of heparin binding and neutralization may be considered a possible physiological mechanism initiated by conformational alteration of the S protein molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Two forms of DNA-dependent ATPase activity were previously purified from the yeast Saccharomyces cerevisiae and characterized (Plevani, P., Badaracco, G., and Chang, L. M. S. (1980) J. Biol. Chem. 255, 4957-4963). Here, an additional DNA-dependent ATPase (ATPase III) has been purified from S. cerevisiae to near homogeneity. This ATPase differs from those described previously in its chromatographic properties, molecular weight, reaction properties and immunological relatedness. Its molecular weight is about 63,000 in the presence of sodium dodecyl sulfate. It hydrolyzes ATP to ADP and orthophosphate in the presence of DNA as an effector. In addition, yeast DNA polymerase I, which is a true DNA replicase of yeast, is stimulated severalfold by this ATPase. Neither yeast DNA polymerase II nor prokaryotic DNA polymerases are stimulated. This stimulation is intrinsic to the ATPase activity, since both activities copurified in the last four steps of purification, showed the same heat stability and showed dependence on and hydrolysis of ATP. The ATPase III preparation also contains a DNA-unwinding (DNA helicase) activity, which unwinds double-stranded DNA in the presence of ATP. In the S. cerevisiae radiation-sensitive mutant rad3, no significant ATPase III activity could be detected, suggesting that the RAD3 gene, which codes for a different polypeptide, regulates the expression of ATPase III activity.  相似文献   

8.
In view of the unsatisfactory appearance, under the electron microscope, of liver mitochondria isolated in isotonic sucrose medium, alternative media have been examined. It was found to be advantageous to replace sucrose by raffinose, and to add levan or, preferably, dextran, together with heparin in suitable concentration. With the optimal medium, the constituents of which are raffinose, versene (optional), dextran of high molecular weight, heparin, and AMP (optional), most of the mitochondria in the osmium-fixed pellet are apparently intact, and show the membranes characteristic of mitochondria as seen in cell sections. The optimal medium has no adverse effect on the activity of the several tissue enzymes which have been studied, except that Mg++-activated ATPase is partially inhibited if the medium is present in high concentration in the assay system. Mitochondrial fractions isolated in the new medium have, in common with sucrose fractions, appreciable "free" ATPase activity, this activity being evidently a poor criterion of mitochondrial integrity. Use of the new medium does not decrease the proportion of cytoplasmic ATPase which fails to sediment with the mitochondria, but does give a mitochondrial fraction low in RNA and in acid phosphatase activity and little contaminated with microsomal material. Particles tentatively identified as "lysosomes" have been seen in certain sections.  相似文献   

9.
In the present study, antibodies were raised against the Mg(2+)-ATPase and the immunological relationships between the enzyme and other ATPase from a variety of biological membranes were determined. The anti Mg(2+)-ATPase antiserum inhibited 85% of the enzyme activity from A. laidlawii membranes. We demonstrate a specific selectivity of Mg(2+)-ATPase antiserum for antigenic determinants of the A. laidlawii membranes. Immunoblot studies of A. laidlawii membrane peptides indicated labeling of five bands, 66KD, 49KD, 34KD, 26KD and 13KD, corresponding to five subunits of the ATPase in A. laidlawii membranes.  相似文献   

10.
Profilin inhibits the rate of nucleation of actin polymerization and the rate of filament elongation and also reduces the concentration of F-actin at steady state. Addition of profilin to solutions of F-actin causes depolymerization. The same steady state concentrations of polymerized and nonpolymerized actin are reached whether profilin is added before initiation of polymerization or after polymerization is complete. The KD for formation of the 1:1 complex between Acanthamoeba profilin and Acanthamoeba actin is in the range of 4 to 11 microM; the KD for the reaction between Acanthamoeba profilin and rabbit skeletal muscle actin is about 60 to 80 microM, irrespective of the concentrations of KCl or MgCl2. The critical concentration of actin for polymerization and the KD for the actin-profilin interaction are independent of each other; therefore, a change in the critical concentration of actin alters the amount of actin bound to profilin at steady state. As a consequence, the presence of profilin greatly amplifies the effects of small changes in the actin critical concentration on the concentration of F-actin. Profilin also inhibits the ATPase activity of monomeric actin, the profilin-actin complex being entirely inactive.  相似文献   

11.
Commerical heparin, 135 USP units/mg, was fractionated by human α-thrombin-agarose affinity chromatography. Heparin was applied to an α-thrombin-agarose column equilibrated with 0.01 M Tris HCl (pH 7.4). Unbound heparin was washed from the column with the equilibration buffer. Bound heparin could be eluted with buffer containing 0.025 M NaCl. The specific activity of bound heparin was as great as 500 USP units/mg. Gel filtration was used to fractionate the heparin into molecular size classes. Low molecular weight heparin, with an average specific activity of 100 USP units/mg, was applied to the α-thrombin-agarose column. Gel filtration of the unbound heparin indicated that larger heparin molecules been selectively removed by the α-thrombin-agarose column. Bound heparin had a specific activity of 270 units/mg. Kinetic results of N-α-tosyl-L-glycyl-L-prolyl-L-arginine-p-nitroanilide hydrolysis by α-thrombin in the presence of heparin correlated with the anticoagulant activity.  相似文献   

12.
Cesaretti M  Luppi E  Maccari F  Volpi N 《Glycobiology》2004,14(12):1275-1284
Heparin with high anticoagulant activity (activated partial thromboplastin time of 347 +/- 56.4 and anti-Xa activity of 317 +/- 48.3) was isolated from the marine clam species Tapes phylippinarum in an amount of approximately 2.1 mg/g dry animals. Agarose-gel electrophoresis showed a high content of the slow-moving heparin component (22 +/- 6.8%) and 78 +/- 5.4% of the fast-moving species. An average molecular mass of 13,600 was calculated by PAGE analysis, whereas a number average molecular weight Mn value of 10,700, a weight average molecular weight Mw of 14,900, and a dispersity index Mn/Mw of 1.386 were obtained by high-performance size-exclusion chromatography. Structural analysis of clam heparin, performed by depolymerizing heparin samples with heparinase (EC 4.2.2.7) and then separating the resulting unsaturated oligosaccharides by strong anion exchange-HPLC revealed the presence of large amounts (more than 130% than standard pharmaceutical heparin obtained from bovine intestine) of the oligosaccharide sequence bearing part of the ATIII-binding region, DeltaUA2S (1-->4)-alpha-D-GlcN2S6S (1-->4)-alpha-L-IdoA (1-->4)-alpha-D-GlcNAc6S (1-->4)-beta-D-GlcA (1-->4)-alpha-D-GlcN2S3S6S in the T. phylippinarum heparin, in comparison with bovine mucosal heparin and a sample of porcine mucosal heparin previously published. Furthermore, as expected from the oligosaccharide compositional analysis, due to the presence of a great mol % (80.6%) of the trisulfated disaccharide DeltaUA2S(1-->4)-alpha-D-GlcN2S6S, mollusc heparin is a more sulfated polysaccharide than bovine mucosal heparin (73.5%) and a sample of porcine mucosal (72.8%) heparin previously reported. To our knowledge, this is the first article describing a clam heparin having the ATIII binding site mainly identical to that of human and porcine intestinal mucosal heparins and bovine intestinal mucosal heparin but different from that found in beef lung heparin.  相似文献   

13.
M E Silva 《Biochimie》1979,61(4):543-547
Human blood platelets are able to degrade heparin from different tissues and species. The main degradation product is an oligosaccharide. Low molecular weight components such as inorganic sulfate or monosaccharides, i.e. products released by exoenzymes are not detected. The in vitro degradation of heparin by the crude enzyme is observed at pHs below 6.5 with an optimum temperature around 37 degrees C. The presence of sulfate in the substrate structure is shown to be essential for the enzyme activity. Since the oligosaccharides formed have only 10 per cent of the anticoagulant activity of the heparins tested, it is conceivable that the platelet enzyme may play an important role in the inactivation of some of the biological properties of heparin.  相似文献   

14.
Intravenous heparin administration caused a marked inhibition of Mg++-dependent (Na++K+)-stimulated ATPase activity of sarcolemmal (SL) membranes prepared from rabbit heart, whereas basal Mg++-ATPase was not affected. The inhibition depended on K+ concentration and was reversed only in the presence of albumin. Plasma free fatty acid (FFA) concentrations were raised in all animals, after heparin administration. The results obtained support the concept that FFA or other lipids originating in the plasma by the action of lipolytic enzymes released by heparin are involved in the mechanism of inhibition.  相似文献   

15.
The matrix-degrading enzyme aggrecanase has been identified in cartilage and is largely responsible for cartilage breakdown. The present study determined the efficacy of different heparin molecular weight fractions (HMWFs) and low molecular weight heparins (LMWHs) on aggrecanase activity. Aggrecanase activity was determined using biotinylated peptide substrate, which was immobilized onto streptavidin-coated 96-well plates; aggrecanase enzyme was then added. Proteolysis of the substrate at the specific amide bond was detected using specific antibody for the neoepitope generated. HMWFs ranging from 1,700 to 12,000 Da demonstrated a concentration-dependent inhibitory efficacy of aggrecanase activity, with a Ki ranging from 5,000 nM down to 1 nM as a function of the molecular weight. The higher the molecular weight distribution, the greater the inhibitory efficacy of the heparin fragments toward aggrecanase activity. The absence or presence of antithrombin did not alter the affinity of heparin in inhibiting aggrecanase. Additionally, tissue factor pathway inhibitor at various levels did not alter the activity of aggrecanase. LMWHs demonstrated different levels of potency in inhibiting aggrecanase activity as a function of their average molecular weight distribution. Tinzaparin (average molecular weight = 6,500 Da) and enoxaparin (average molecular weight = 4,500 Da) demonstrated a Ki of 20 and 80 nM, respectively. The aggrecanase inhibitory effect of LMWH might contribute to blocking inflammation and tumor invasion by inhibiting aggrecanase activity and maintaining an intact extracellular matrix barrier.  相似文献   

16.
Abstract— The hypothesis that the ATPase and phosphatidyhnositol (PI) kinase activities of chromaffin vesicle membranes are catalysed by same enzyme was investigated. The two activities exhibited entirely different responses to variations in Mg2+ or Mn2+ concentrations. In the presence of 1 mM ATP, maximal ATPase activity occurred with 1 mM Mg2+ while maximal PI kinase activity required 100 mM Mg2+ Similar differences were observed with Mn2+ with the exception that maximal ATPase activity occurred with 0.5 mM Mn2+ and maximal PI kinase activity occurred with 5 mM Mn2+ Mn2+ was more effective than Mg2+ in stimulating PI kinase activity at low concentrations, but at optimal concentrations of each, the maximal activity obtained with Mg2+ was 5-fold greater than the maximal activity obtained with Mn2+ The heat stabilities of the two enzymes are vastly different. At 50°C the ATPase activity of the intact membranes was stable for up to 20 min while the t l/2 of PI kinase was less than 2 min. After solubilization in Lubrol PX or at higher temperatures both enzymes were less heat stable, but PI kinase was still inactivated at a much greater rate than the ATPase. The evidence suggests that the ATPase and the PI kinase are different proteins.
The major phosphorylated product was diphosphatidylinositol and once formed, it was stable. Phosphorylation of membrane protein accounted for less than 10% of the total 32P-incorporated into chromaffin vesicles. SDS gel electrophoresis of the solubilized membranes showed the presence of at least 2 major phosphorylated high molecular weight components.  相似文献   

17.
K+ interactions with a rat brain (Na+ + K+)-dependent ATPase and the associated K+-dependent nitrophenyl phosphatase activity were examined. Classes of sites for K+ were distinguished, initially, on the basis of affinity estimated by kinetic analysis in terms of KO.5 (the concentration for half-maximal activation), and by K+-accelerated enzyme inactivation by F-minus, which permits evaluation of a dissociation constant for K+, KD. Moderate-affinity sites ("alpha sites"), with a KD near 1 mM, were demonstrable for the phosphatase activity and for the "free" enzyme. High-affinity sites ("beta sites"), with a KD near 0.1 mM, were seen for the overall ATPase activity and under conditions in which enzyme phosphorylation by substrate also occurs. Further differentiation between alpha and beta sites was made in terms of (i) the characteristic changes in affinity with pH, and (ii) the efficacy of Li+ relative to K+, Rb+, Cs+, and Tl+ at these two classes of sites. Low-affinity sites ("gamma sites") through which K+ inhibits enzymatic activity were also detectable, with a KD around 140 mM. These data are incorporated into a model for the reaction sequence to accommodate both transport processes and certain K+/ATP antagonisms.  相似文献   

18.
Heparin is naturally occurring polysaccharides which interacts with seminal plasma proteins and regulate multiple steps in fertilization process. Qualitative and quantitative information regarding the affinity for heparin-seminal plasma proteins interactions is not generally well documented and there are no reports of a comprehensive analysis of these interactions in human seminal plasma. Such information should improve our understanding of how GAGs especially heparin present in the reproductive tract regulate fertilization. In this study, we use SPR to study interactions of heparin with various seminal plasma heparin-binding proteins (HBPs). HBPs like lactoferrin (LF), fibronectin fragment (FNIII), semenogelinI (SGI) and prostate specific antigen (PSA) all bind heparin with different binding kinetics and affinities. Kinetic data suggests that FNIII binds heparin with a high affinity (KD=3.2 nM), while PSA binds heparin with a micromolar affinity (KD=11.1 μM). Preincubation of SGI with heparin inhibits the binding of SGI to immobilized PSA in a dosedependent manner, while FNIII incubated with heparin binds with an increased affinity to PSA. Solution-competition studies show that the minimum size of a heparin oligosaccharide capable of binding with PSA is greater than a tetrasaccharide, with LF and SGI is larger than a hexasaccharide and for FNIII is larger than an octasaccharide.  相似文献   

19.
Effects of heparin, spermidine, and Be2+ ions on the ATPase and beta-glycerophosphatase and RNA-ase activities of the rat liver cell nuclei were studied. Be2+ was shown to inhibit the ATPase activity and, to a lesser extent, beta-glycerophosphatase activities. Physiological concentrations of heparin and spermidine also lowered the mentioned two activities, as well as the RNAase activity of the nuclei. Evidence is presented for the inhibitory effect of heparin and spermidine on endonucleases.  相似文献   

20.
1. The mitochondrial adenosine triphosphatase (ATPase) of Acanthamoeba castellanii is Mg2+-requiring (optimum cation: ATP ratio of 1.5) and has two pH optima of activity (at pH 6.6 and 8.1). 2. ATPase activity of submitochondrial particles is effectively inhibited by twelve different inhibitors of energy conservation suggesting similarities in inhibitor-binding sites to other previously characterized complexes. 3. Gel filtration by passage through Sephadex G-50 increases ATPase activity of submitochondrial particles between 1.5 and 3.5 fold indicating the presence of a low molecular weight inhibitor protein. 4. After removal of the inhibitor protein, sensitivity to inhibitors of energy conservation decreases by between 1.5 and 14 fold. Crude F1-inhibitor preparations from A. castellanii, Schizosaccharomyces pombe, Tetrahymena pyriformis and bovine heart also inhibit ATPase activity. 5. Large variations in ATPase activity, F1-inhibitor protein activity, and amounts of immunologically-determined ATPase protein were observed during exponential growth, and the correlation between changes in these measurements is discussed. 6. The results are also discussed highlighting the similarities between the mitochondrial ATPase of A. castellanii and other mitochondrial ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号