首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron microscope has contributed deep insights into biological structure since its invention nearly 80 years ago. Advances in instrumentation and methodology in recent decades have now enabled electron tomography to become the highest resolution three-dimensional (3D) imaging technique available for unique objects such as cells. Cells can be imaged either plastic-embedded or frozen-hydrated. Then the series of projection images are aligned and back-projected to generate a 3D reconstruction or 'tomogram'. Here, we review how electron tomography has begun to reveal the molecular organization of cells and how the existing and upcoming technologies promise even greater insights into structural cell biology.  相似文献   

2.
Three-dimensional (3-D) reconstructions, by electron microscope tomography, of selectively stained, contrast enhanced Balbiani Ring (BR) hnRNP granules reveal a complex spatial arrangement of RNA-rich domains. This particulate substructure was examined by volume rendering computer graphics. Modeling the arrangement of RNA-rich domains is made difficult by apparent structural flexibility and/or heterogeneity of composition. Formulation of a consensus 3-D arrangement of RNA-rich domains will require an expanded data base of reconstructed BR granules and the development of new image manipulation and analysis techniques. This study demonstrates the potential for ultra-structural cell biology of combining several new techniques: selective nucleic acid staining, electron spectroscopic imaging to enhance contrast, electron microscope tomography and volume rendering computer graphics.Abbreviations BR Balbiani Ring - EMT electron microscope tomography - ESI electron spectroscopic imaging - hnRNP heterogeneous nuclear ribonucleoprotein - OA-B osmium ammine-B - kb kilobases by P.B. Moens  相似文献   

3.
The central region of the synaptonemal complex revealed in three dimensions   总被引:10,自引:0,他引:10  
The synaptonemal complex plays a key role in pairing of homologous chromosomes during meiosis. Its gross structure was already known by conventional electron microscopy, but only recently has it been possible to reveal the synaptonemal complex in three dimensions at higher resolution by electron microscope tomography. As the molecular analysis of meiosis is developing rapidly, a more thorough understanding of the principal organization of the synaptonemal complex is essential.  相似文献   

4.
A characteristic feature of the astrocytic processes is to assume the form of shin sheets or lamellate coverings of other brain constituents. We analyzed the extensive and finely divided processes of the protoplasmic astrocyte in the molecular layer of the rat dentate gyrus by means of computer electron tomography and stereo-photogrammetry using tilted high voltage electron microscope images of thick Golgi preparations. The surface area and volume of the astrocytic processes were measured and the surface/volume ratios were estimated. The surface/volume ratios of astrocytic processes in the neuropile ranged from 18.9 to 33.0 per μm, and the mean value was 26.2 ± 5.0 per μm. The values were roughly comparable to those previously reported for the microdomain of Bergmann glia cell terminal processes in the rat cerebellum, which were estimated from reconstructions using thin serial section electron microscope images. The large surface to volume ratio of the astrocytic processes in the neuropile resulted from the lamellar nature of the processes interposed between other cellular elements, and may reflect the functional activities of the astrocyte. The results suggest the usefulness of the electron tomography and stereo-photogrammetry for three-dimensional morphometrical analysis of the astrocytic processes, although both techniques can be expected to be refined further in order to provide more precise measurements of these complicated processes.  相似文献   

5.
Micheva KD  Smith SJ 《Neuron》2007,55(1):25-36
Many biological functions depend critically upon fine details of tissue molecular architecture that have resisted exploration by existing imaging techniques. This is particularly true for nervous system tissues, where information processing function depends on intricate circuit and synaptic architectures. Here, we describe a new imaging method, called array tomography, which combines and extends superlative features of modern optical fluorescence and electron microscopy methods. Based on methods for constructing and repeatedly staining and imaging ordered arrays of ultrathin (50-200 nm), resin-embedded serial sections on glass microscope slides, array tomography allows for quantitative, high-resolution, large-field volumetric imaging of large numbers of antigens, fluorescent proteins, and ultrastructure in individual tissue specimens. Compared to confocal microscopy, array tomography offers the advantage of better spatial resolution, in particular along the z axis, as well as depth-independent immunofluorescent staining. The application of array tomography can reveal important but previously unseen features of brain molecular architecture.  相似文献   

6.
冷冻电子断层成像技术及其在生物研究领域的应用   总被引:1,自引:0,他引:1  
冷冻电子断层成像可以在纳米级尺度上研究那些结构不具有均一性的分子、病毒、细胞器以及它们之间组成的复合体的三维结构。在过去的十年中,电子显微镜硬件、冷冻制样设备和技术,以及自动化断层数据收集方法的进步使得本研究领域得到快速发展。本文对冷冻电子断层成像的方法,包括基本原理、样品制备、断层数据采集和图像处理、三维重构以及重建信息的理解和展示、近年来在生物样品领域的一些典型应用以及前景作一简单介绍。  相似文献   

7.
Three-dimensional imaging of biological complexity   总被引:5,自引:0,他引:5  
Over the past 5 years, thanks to advances in both instrumentation and computational speed, three-dimensional imaging techniques using the electron microscope have been greatly improved in two areas: electron tomography of cell organelles or cell sections and reconstruction of macromolecules from single particles. Ice embedment has brought a breakthrough in the degree of preservation of specimens under close-to-native conditions. The current challenge is to push the resolution of electron tomographic imaging to a point where macromolecular signatures can be recognized within the cellular context. We show first progress toward this goal by examples in two areas of application: the structure of the muscle triad junction and the architecture and fine structure of mitochondria. As techniques of cryo-microtomy are perfected, we hope to be able to apply tomography to high-pressure frozen sections of tissue.  相似文献   

8.
The absence of imaging lenses after the specimen in the scanning transmission electron microscope (STEM) enables electron tomography to be performed in the STEM mode on micrometer-thick plastic-embedded specimens without the deleterious effect of chromatic aberration, which limits spatial resolution and signal-to-noise ratio in conventional TEM. Using Monte Carlo calculations to simulate electron scattering from gold nanoparticles situated at the top and bottom surfaces of a plastic section, we assess the optimal acquisition strategy for axial bright-field STEM electron tomography at a beam-energy of 300keV. Dual tilt-axis STEM tomography with optimized axial bight-field detector geometry is demonstrated by application to micrometer-thick sections of beta cells from mouse pancreatic islet. The quality of the resulting three-dimensional reconstructions is comparable to that obtained from much thinner (0.3-micrometer) sections using conventional TEM tomography. The increased range of specimen thickness accessible to axial STEM tomography without the need for serial sectioning enables the 3-D visualization of more complex and larger subcellular structures.  相似文献   

9.
Semiautomatic single-axis tilt electron tomography has been used to visualize the three-dimensional organization of actin filaments in "phantom cells," i.e. lipid vesicles. The instrumentation consisted of a 120-kV electron microscope equipped with a postcolumn energy filter, which was used in the zero-loss imaging mode. Apart from changing the tilt angle, all steps required for automated tomography, such as recentering the image area, refocusing, and centering the energy-selecting slit, were performed by external computer control. This setup permitted imaging of ice-embedded samples up to a thickness of 800 nm with improved image contrast compared with that produced by tomography with a conventional electron microscope. In spite of the missing-wedge effect that is especially obvious in the study of membrane-filament interaction, single-axis tilt tomography was found to be an appropriate (in fact the only available) method for this kind of investigation. In contrast to random actin networks found in actin gels, actin filaments in and on vesicles with a bending radius of less than approximately 2 microns tend to be arranged in single layers of parallel filaments and often induce an elongated shape of the vesicles. Actin filaments located on the outside usually associate with the vesicle membrane.  相似文献   

10.
Electron tomography is an extremely useful method for deriving three-dimensional structure from electron microscope images. The application of this technique to the reconstruction of large, complex structures such as mitochondria is described in conjunction with several tools for segmentation, measurement, classification, and visualization. In addition, the use of massively parallel computers to perform the tomographic reconstruction efficiently using R-weighted backprojection or iterative techniques is described.  相似文献   

11.
Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction.Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm.Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed.  相似文献   

12.
Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.  相似文献   

13.
Understanding the molecular architectures of enveloped and complex viruses is a challenging frontier in structural biology. In these viruses, the structural and compositional variation from one viral particle to another generally precludes the use of either crystallization or image averaging procedures that have been successfully implemented in the past for highly symmetric viruses. While advances in cryo electron tomography of unstained specimens provide new opportunities for identification and molecular averaging of individual subcomponents such as the surface glycoprotein spikes on purified viruses, electron tomography of stained and plunge-frozen cells is being used to visualize the cellular context of viral entry and replication. Here, we review recent developments in both areas as they relate to our understanding of the biology of heterogeneous and pleiomorphic viruses.  相似文献   

14.
Freeze-fracture autoradiography: feasibility   总被引:1,自引:1,他引:0       下载免费PDF全文
We have shown that the combination of freeze-fracture with electron microscope autoradiography can be developed into a technique for correlating the molecular structure of the biological membrane with its chemical and functional characteristics. Within the limits of electron microscope autoradiographic resolution, FARG has the potential to detect the relative distribution of molecules in each half of the membrane and within the plane of the membrane. The use of radioisotopic labels in combination with freezing techniques requires minimal perturbation of the system being studied and may be suitable for the examination of substances which would be extracted or would diffuse during the normal fixation and embedding procedures used in standard electron microscope autoradiography.  相似文献   

15.
We describe methods for interactive visualization and analysis of density maps available in the UCSF Chimera molecular modeling package. The methods enable segmentation, fitting, coarse modeling, measuring and coloring of density maps for elucidating structures of large molecular assemblies such as virus particles, ribosomes, microtubules, and chromosomes. The methods are suitable for density maps with resolutions in the range spanned by electron microscope single particle reconstructions and tomography. All of the tools described are simple, robust and interactive, involving computations taking only seconds. An advantage of the UCSF Chimera package is its integration of a large collection of interactive methods. Interactive tools are sufficient for performing simple analyses and also serve to prepare input for and examine results from more complex, specialized, and algorithmic non-interactive analysis software. While both interactive and non-interactive analyses are useful, we discuss only interactive methods here.  相似文献   

16.
The low signal-to-noise ratio (SNR) in images of unstained specimens recorded with conventional defocus phase contrast makes it difficult to interpret 3D volumes obtained by electron tomography (ET). The high defocus applied for conventional tilt series generates some phase contrast but leads to an incomplete transfer of object information. For tomography of biological weak-phase objects, optimal image contrast and subsequently an optimized SNR are essential for the reconstruction of details such as macromolecular assemblies at molecular resolution. The problem of low contrast can be partially solved by applying a Hilbert phase plate positioned in the back focal plane (BFP) of the objective lens while recording images in Gaussian focus. Images recorded with the Hilbert phase plate provide optimized positive phase contrast at low spatial frequencies, and the contrast transfer in principle extends to the information limit of the microscope. The antisymmetric Hilbert phase contrast (HPC) can be numerically converted into isotropic contrast, which is equivalent to the contrast obtained by a Zernike phase plate. Thus, in-focus HPC provides optimal structure factor information without limiting effects of the transfer function. In this article, we present the first electron tomograms of biological specimens reconstructed from Hilbert phase plate image series. We outline the technical implementation of the phase plate and demonstrate that the technique is routinely applicable for tomography. A comparison between conventional defocus tomograms and in-focus HPC volumes shows an enhanced SNR and an improved specimen visibility for in-focus Hilbert tomography.  相似文献   

17.
Kilham rat virus (KRV) was grown in a rat nephroma cell line and was purified by two isopycnic centrifugations in cesium chloride. The virus contains single-stranded deoxyribonucleic acid (DNA) with a molecular weight of approximately 1.6 x 10(6). The DNA was extracted from the virion by both phenol extraction and by 2% sodium dodecyl sulfate at 50 C. KRV DNA, extracted by both procedures, was observed in an electron microscope by using a cytochrome c or diethylaminoethyldextran monolayer. The DNA was also exposed to exonuclease I, an enzyme which hydrolyzes specifically linear, single-stranded DNA. Hydrolysis of 70 to 80% of the DNA was observed. Both the enzymatic and the electron microscope studies support the conclusion that extracted KRV DNA is a single-stranded, linear molecule. The length of the DNA was measured in the electron microscope and determined to be 1.505 +/- 0.206 mum.  相似文献   

18.
Access to structural information at the nanoscale enables fundamental insights into many complex biological systems. The development of the transmission electron microscope (TEM) has vastly increased our understanding of multiple biological systems. However, when attempting to visualize and understand the organizational and functional complexities that are typical of cells and tissues, the standard 2-D analyses that TEM affords often fall short. In recent years, high-resolution electron tomography methods, coupled with advances in specimen preparation and instrumentation and computational speed, have resulted in a revolution in the biological sciences. Electron tomography is analogous to medical computerized axial tomography (CAT-scan imaging) except at a far finer scale. It utilizes the TEM to assemble multiple projections of an object which are then combined for 3-D analyses. For biological specimens, tomography enables the highest 3-D resolution (5 nm spatial resolution) of internal structures in relatively thick slices of material (0.2-0.4 microm) without requiring the collection and alignment of large numbers of thin serial sections. Thus accurate and revealing 3-D reconstructions of complex cytoplasmic entities and architecture can be obtained. Electron tomography is now being applied to a variety of biological questions with great success. This review gives a brief introduction into cryopreservation and electron tomography relative to aspects of cytoplasmic organization in the hyphal tip of Aspergillus nidulans.  相似文献   

19.
A spatial relationship between caveolae and sarcoplasmic reticulum (SR) in smooth muscle cells (SMC) was previously reported in computer-assisted three-dimensional reconstruction from transmission electron microscope serial sections. The knowledge of the three-dimensional organization of the cortical space of SMC is essential to understand caveolae function at the cellular level. Cellular tomography using transmission electron microscopy tomography (EMT) is the only available technology to reliably chart the inside of a cell and is therefore an essential technology in the study of organellar nanospatial relationships. Using EMT we further demonstrate here that caveolae and peripheral SR in visceral SMC build constantly spatial units, presumably responsible for a vectorial control of free Ca2+ cytoplasmic concentrations in definite nanospaces.  相似文献   

20.
The localization of scarce antigens in thin sections of biological material can be accomplished by pre-embedment labeling with ultrasmall immuno-gold labels. Moreover, with this method, labeling is not restricted to the section surface but occurs throughout the section volume. Thus, when combined with electron tomography, antigens can be localized in three dimensions in relation to the 3D (three-dimensional) ultrastructure of the cell. However, for visualization in a transmission electron microscope, these labels need to be enlarged by silver or gold enhancement. The increase in particle size reduces the resolution of the antigen detection and the large particles obscure ultrastructural details in the tomogram. In this paper we show for the first time that these problems can be avoided and that ultrasmall gold labels can be localized in three dimensions without the need for gold or silver enhancement by using HAADF-STEM (high angular annular dark-field-scanning transmission electron microscopy) tomography. This method allowed us to three-dimensionally localize Aurion ultrasmall goat anti-rabbit immuno-gold labels on sections of Epon-embedded, osmium-uranium-lead-stained biological material. Calculations show that a 3D reconstruction obtained from HAADF-STEM projection images can be spatially aligned to one obtained from transmission electron microscopy (TEM) projections with subpixel accuracy. We conclude that it is possible to combine the high-fidelity structural information of TEM tomograms with the ultrasmall label localization ability of HAADF-STEM tomograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号