首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MW(t) Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on an air-cooled probe at a temperature of 500 degrees C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.  相似文献   

3.
In this paper, the effects of fluidization velocity, bed temperature and fuel feeding rate on the defluidization time and agglomerate fraction in the fluidized bed combustion of rice straw were studied. The fuel ash, necks in agglomerates and coating layers of bed particles were studied by means of the scanning electron microscope, coupled with energy-dispersive spectroscopy (SEM/EDS). Results showed that the stickiness of bed particles induced by coating layers is the direct reason for bed defluidization. The alkali metals such as K and Na mainly exist in the outer layer of rice straw particles. During combustion the high temperature can cause the alkali species melting and coating the surfaces of ash particles. Consequently, ash particles become sticky and tend to adhere to the surfaces of bed particles. The large-sized ash particles may act as the necks in the formation of agglomerates. The small-sized ash particles may contribute to the formation of coating layers.  相似文献   

4.
The detachment of biomass from suspended biofilm pellets in three-phase internal loop airlift reactors was investigated under non-growth conditions, and in the presence of bare carrier particles. In the experiments the size of biofilm pellets and bare carrier particles was varied. Results show that an increase in particle size drastically increases the abrasion rate caused by particle collisions. This increase is larger than predicted by conventional collision theory, which accounts for changes in collision frequency and collision impact. However, collision theory was formulated for neutrally buoyant particles which follow the liquid flow. This condition does not hold for biofilm pellets and carrier particles. The difference might therefore be caused by differences in particle responses to flow fluctuations. An empirical relationship, including this flow response, was formulated. The collision impact is also strongly affected by the roughness of a bare carrier particle: sharp and edgy particles cause much more damage than smoother ones. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 206-215, 1997.  相似文献   

5.
The influence of matrix properties and operating conditions on the performance in fluidized-bed adsorption has been studied using Streamline diethyl-aminoethyl (DEAE), an ion exchange matrix based on quartz-weighted agarose, and bovine serum albumin (BSA) as a model protein. Three different particle size fractions (120-160 mum, 120-300 mum, and 250-300 mum) were investigated. Dispersion in the liquid phase was reduced when particles with a wide size distribution were fluidized compared to narrow particle size distributions. When the mean particle diameter was reduced, the breakthrough capacities during frontal adsorption were enlarged due to a shorter diffusion path length within the matrix. At small particle diameters the effect of film mass transfer became more relevant to the adsorption performance in comparison to larger particles. Therefore matrices designed for fluidized-bed adsorption should have small particle diameter and increased mean particle density to ensure small diffusion path length in the particle and a high interstitial velocity to improve film mass transfer. Studies on the influence of sedimented matrix height on axial mixing showed an increased Bodenstein number with increasing bed length. Higher breakthrough capacities were also found for longer adsorbent beds due to reduced dispersion and improved fluid and particle side mass transfer. With increasing bed height the influence of flow rate on breakthrough capacity was reduced. For a settled bed height of 50 cm breakthrough capacities of 80% of the equilibrium capacity for flow rates varying from 3 to 9 cm/min could be achieved. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 54-64, 1997.  相似文献   

6.
7.
Continuous production of a recombinant murine granulocyte-macrophage colony-stimulating factor (MuGM-CSF) by immobilized yeast cells, Saccharomyces cerevisiae strain XV2181 (a/a, Trp1) containing plasmid palphaADH2, in a fluidized bed bioreactor was studied at a 0.03 h(-1) dilution rate and various particle loading rates ranging from 5% to 33% (v/v). Cells were immobilized on porous glass beads fluidized in an air-lift draft tube bioreactor. A selective medium containing glucose was used to start up the reactor. After reaching a stable cell concentration, the reactor feed was switched to a rich, nonselective medium containing ethanol as the carbon source for GM-CSF production. GM-CSF production increased initially and then dropped gradually to a stable level. During the same period, the fraction of plasmid-carrying cells declined continuously to a lower level, depending on the particle loading. The relatively stable GM-CSF production, despite the large decline in the fraction of plasmid-carrying cells, was attributed to cell immobilization. As the particle loading rate increased, the plasmid stability also increased. Also, as the particle loading increased from 5% to 33%, total cell density in the bioreactor increased from 16 to 36 g/L, and reactor volumetric productivity increased from 0.36 to 1.31 mg/L.h. However, the specific productivity of plasmid-carrying cells decreased from 0.55 to 0.07 mg/L.g cell. The decreased specific productivity at higher particle loading rates was attributed to reduced growth efficiency caused by nutrient limitations at higher cell densities. Both the reactor productivity and specific cell productivity increased by two- to threefold or higher when the dilution rate was increased from 0.03 to 0.07 h(-1). (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
9.
Summary The liquid and solids mixing in fluidized bed bio-reactors containing particles with a density only slightly higher than water (1100 kg/m3) is generally consistent with the results found in previous studies for reactors with particles of higher density. The liquid mixing can be described by an axial dispersion model for a large variety of conditions while the solids follow the streamlines of the liquid. In the presence of a gas phase the degree of mixing of both the liquid and the solid phase increased. This effect became larger with increasing reactor diameter. In the extrapolation of laboratory data of three phase fluidized bed bio-reactors to pilot plant systems this effect should be taken into account. The liquid and solids mixing may have a substantial effect on overall conversion rates and on possible microbial stratification in the reactor.Nomenclature Bo Bodenstein number v L/D (-) - D r diameter of the fluidized bed reactor (m) - D 1 Dispersion coefficient of the liquid phase (m2/s) - D g dispersion coefficient of the solid phase (m2/s) - E(in) normalized dye concentration function entering the ideally mixed tank reactor (-) - E(t) normalized dye concentration function as measured (-) - L length of the axial dispersed reactor (m) - t time after dye injection (s) - t m time constant for microbial selection (s) - t s solid mixing time constant (s) - t time interval in which a particle migrates within the bed (s) - v t superficial gas velocity (m/s) - v g superficial liquid velocity (m/s) - z migration distance of a particle in the bed (m) - 1 in situ growth rate of a dominant organism (s-1) - 2 in situ growth rate of a recessive organism (s-1) - average residence time in the axial dispersed reactor (s) - t average residence time in the ideally mixed tank reactor (s)  相似文献   

10.
This study was focused on investigating the optimum fluidising velocity during the combustion of rice husk in a bench-scale fluidised bed combustor (ID 210mm) to obtain low carbon ash in the amorphous form. When all other parameters are held constant, the optimum fluidizing velocity aids in almost complete combustion, thereby releasing the entrapped carbon for further conversion. This results in ash with consistently low carbon content (less than 2wt%). The range of fluidising velocities investigated was from as low as 1.5U(mf) to as high as 8U(mf). It was found that the optimum fluidising velocity was approximately 3.3U(mf) as the mixing of rice husk with the bed was good with a high degree of penetration into the sand bed. The resulting ash retained its amorphous form with low residual carbon content (at 2.88wt%) and minimal sand contamination as shown by the X-ray diffraction analysis.  相似文献   

11.
The general rate model was developed and solved to describe protein adsorption in an expanded bed. The model takes into account axial variation of bed porosity, particle size distribution (PSD), external and intraparticle mass transfer, and dispersion in liquid and solid phase. The analysis of the influence of the model parameters on dynamic capacity (DC) was investigated. The simulation results showed that major impact on dynamic capacity is exerted by intraparticle mass transfer (particle diameter and pore diffusivity). The external mass transfer resistance and dispersion parameters have secondary effect on DC. The replacement of axial PSD by the mean particle diameter results in error in calculation of DC, which increases remarkably with the increase of mean particle diameter. The PSD can promote a very slow approaching of plateau concentration by breakthrough curves. It was shown also that axial bed porosity variation could be replaced by average porosity with negligible error for DC calculations.  相似文献   

12.
The effect of particle size on bioavailability of 9 different formulations with cyclosporine A was studied. A common feature of all the formulations was the ability to form submicron dispersions under dilution. The composition of individual formulations was chosen in such a way that they were based on same or similar excipients. For each formulation, pharmacokinetic study was carried out in beagle dogs. On groups of 10 dogs, the average AUC was evaluated. Particle size of formulations under dilution in water was measured by laser scattering method. According to the results of particle size measurement, the formulations were sorted out into groups of similar particle size distribution by use of two methods of multivariate statistical analysis. The average AUC within groups and between-groups was compared, and the effect of particle size on bioavailability was evaluated.  相似文献   

13.
The entrapment of residual hydrocarbon globules by water table fluctuations can produce a long‐term contamination threat to groundwater supplies that is difficult to remove. The mobilization of entrapped hydrocarbon globules depends on the balance between capillary and gravitational forces represented by the Bond number. It is important to estimate the potential for hydrocarbon entrapment at a spill site due to its influence on the effectiveness of remediation efforts. The present work focuses on the influence of particle diameter on hydrocarbon entrapment for a typical LNAPL (light nonaqueous‐phase liquid). Laboratory column tests have been conducted using a dual‐beam gamma densitometer to measure saturations of the three phases (water, air, and hydrocarbon). Soltrol 170®, a solvent manufactured by Phillips 66 Co., is used as the hydrocarbon. Residual saturation of the Soltrol is measured after fluctuations in water table level to establish the distribution and consistency of hydrocarbon entrapment below the water table. Glass particles of nearly uniform size were used to represent a sandy soil. In the experiments, average particle sizes ranged from 210 to 6000 μm. Data were also taken using the synthetic soil matrix approved by the U.S. Environmental Protection Agency (EPA) for contamination studies. Results show that the distribution of trapped LNAPL is quite uniform and that the average residual saturation is about 13% up to a particle diameter of 710 μm. Above this diameter, residual saturation decreases with particle size. The corresponding critical Bond number, determined experimentally, agrees well with the predicted value of 1.6.  相似文献   

14.
The aim of the present work is the performance evaluation of a fluidized bed reactor in the anaerobic treatment of a wastewater deriving from the washing operations of the wine industry. The results are in agreement with the ones obtained using a mixture of municipal and food processing wastewaters containing high organic contents. A comparison with other liquid wastes shows that no subtrate inhibition phenomenon occurs with the above substrates. A saturation kinetic model is also presented for describing the dependence of the COD removal rate on the organic loading rate.  相似文献   

15.
Direct observation was used to measure feeding rates of the flagellate Spumella on three sizes of bacteria plus 0.3 µm latex beads using video microscopy. Feeding rate was maximum on the intermediate-sized bacteria. Maximum ingestion rates (Im) for the large- (0.53 µm3), intermediate- (0.08 µm3) and small-sized (0.02 µm3) bacteria and 0.014 µm3 latex beads were 11, 38 and 14 bacteria and 9 beads flagellate–1 h–1, respectively. The growth rates of Spumella sp. feeding on monoxenic cultures of the large- vs. the intermediate-sized bacteria were indistinguishable but Spumella sp. could not sustain its population density when feeding on the small bacterium as the sole food source. Our data are consistent with the hypothesis that Spumella sp., and possibly other flagellate protozoa, tend to feed selectively on larger prey. One consequence of this hypothesis is that differential grazing by bactivores may select for small bacteria in natural waters.  相似文献   

16.
This paper presents an experimental analysis of matrix bead size distribution and voidage variations with axial height in an expanded bed adsorption system. Use of a specially constructed expanded bed with side ports has enabled sampling from within the expanded bed along the vertical axis. Particles removed from within the bed were measured for their size distributions. Residence time distribution studies were used to estimate bed voidage. Measurements of axial and radial particle size distributions and axial voidage distribution have been made at different flow rates. Particle size was found to be radially constant, indicating constant stratification in the column. The particle size was found to decrease with increasing axial height. Voidage increased with axial height from a settled bed value of 0.39 to approaching unity for high liquid velocities and increased at a constant axial position with increased flowrate. This information provides key insight into bed stability and data for the improved modeling of this important unit operation.  相似文献   

17.
18.
Summary A fluidized bed fermentor is used for anaerobic digestion. The influence of Hydraulic Retention Time, inlet concentration and degree of colonization is investigated. The degradation kinetics seems to depend on the ratio between outlet and inlet concentration. Different kinetic regimes are identified, showing that mass transfer in the biofilms may play an important role on the degradation kinetics.  相似文献   

19.
Summary Sedimentation and fluidization of yeast flocs were found to be non-synonymous processes. The analysis of Richardson and Zaki (1954) was found not to hold when applied to yeast flocs in both regimes. Partial support and channelling were implicated in the deviations from idela behaviour. Other factors responsible for the behaviour of yeast flocs in these regimes are discussed.Symbols D bed height (cm) - g gravitational constant (981 cm·s-1) - n constant (-) - R retardation factor (s) - S constant (-) - v liquid/particle velocity (cm·s-1) - V o particle terminal velocity (cm·s-1) - bed voidage (-)  相似文献   

20.
A four-component, diffusion-reaction model with double Michaelis-Menten kinetics was used to describe the experimental data obtained from a laboratory biofilm, fluidized-bed nitrification reactor. Theory and experiment demonstrated that the stoichiometric ratio (3.5 mg O(2)/mg NH(4) (+)-N) can be employed as a criterion to determine whether the limiting substrate is oxygen or ammonia. For the present work, in the range of concentrations where limitation occurred, 4 mg/L NH(4) (+)-N and 14 mg/L O(2), the ratio of oxygen to ammonia in the bulk liquid determined which substrate was penetration-limiting-O(2) if <3.5 and NH(4) (+) if > 3.5. Halforder kinetics with respect to the limiting substrate described the apparent overall rates. Simulations provided biofilm concentration profiles which demonstrated the role of the oxygen-ammonia ratio. Experiments indicated that, generally, high NO(2) (-) concentrations can be expected. These depend on the residence time, biofilm area, and oxygen concentration. This dependency was investigated with the model, as was the parametric sensitivity with respect to the saturation constants. Particularly important for the NO(2) (-) levels were the ratios of the saturation constants for oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号